OUPONT DE TYVER Forward Together

Product Catalogue

Australia and New Zealand

DuPont Personal Protection

Tyvek

Content overview

- I. Tyvek[®] Forward Together[™]
- II. DuPont product range overview
- III. Garment selection
- IV. Tyvek[®] sustainability initiatives
- V. Tyvek[®] garments and accessories
- VI. Tychem[®] garments and accessories
- VII. ProShield[®] garments
- VIII. Appendices

Forward Together[™].

That simple but powerful statement represents the culmination of the two sides:

The materials side - the science, the testing,

The people side - the relationships, the collaboration.

From all of us at DuPont[™] Tyvek[®] to all of our customers - the creators, the makers, the carers, the builders, and the protectors - it is our promise to innovate alongside them, share our vast knowledge and expertise, and work together more reliably than anyone else can.

It's what makes our products perform like no other. It is our truest differentiator.

It is essential to what we do, who we are, and where we're going.

Which is Forward Together[™].

DuPont Product Range

The user shall be the sole judge for the correct combination of full body protective coverall and ancillary equipment (gloves, boots, respiratory protective equipment etc.) according to risk analysis performed when selecting the garments. Do not re-use the garments.

Tyvek®		CLIC	ск то јимр то іт
	Tyvek [®] 400 Dual	Protection and durability in the front, breathability in the back	Cat.III, Type 5, 6, EN 1073-2, EN 1149-5
	Tyvek [®] 500 Xpert	Setting a new standard of protection in the Type 5 and 6 category through greater protection and comfort	Cat.III, Type 5-B, 6-B, EN 14126, EN 1073-2, EN 1149-5
	Tyvek[®] 500 Xpert Eco Pack	DuPont [™] Tyvek [®] 500 Xpert now available in a new, more sustainable packaging solution - a significant waste reduction compared to standard Tyvek [®] 500 Xpert coverall	Cat.III, Type 5-B, 6-B, EN 14126, EN 1073-2, EN 1149-5
Superior protection against	Tyvek° 500 Safety orange	Fluorescent Orange for Hi-Vis during the day. Rated to the EN ISO 20471 High Visibility clothing standard, for both chromaticity and luminance.	Cat.III, Type 5-B, 6-B, EN 1149-5, EN 1073-2, EN14126
particulates and water-based chemical splashes	Tyvek° 500 HV	All-in-one solution: high-visibility (to the highest class), chemical, biological and antistatic protection in one coverall	Cat.III, Type 5-B, 6-B, EN 14126, EN 1073-2, EN 1149-5, EN ISO 20471, RIS-3279-TOM Issue 1 (replaces GO/RT 3279 Issue 8)
	Tyvek[®] 500 HP Model TY178	Help maintain an effective barrier between the wearer and the full-body harness against external chemical threats	Cat.III, Type 5-B, 6-B, EN 14126, EN 1073-2, EN 1149-5
	Tyvek° 600 Plus	Combining Type 4 performance with the durability, protection and comfort of a Tyvek® garment	Cat.III, Type 4-B, 5-B, 6-B, EN 14126, EN 1073-2, EN 1149-5
	Tyvek [®] 800 J	The breathable Type 3 garment for protection against water-based inorganic chemicals under pressure	Cat.III, Type 3-B, 4-B, 5-B, 6-B, EN 14126, EN 1073-2, EN 1149-5

DuPont Product Range

The user shall be the sole judge for the correct combination of full body protective coverall and ancillary equipment (gloves, boots, respiratory protective equipment etc.) according to risk analysis performed when selecting the garments. Do not re-use the garments.

Tychem®		CI	LICK ТО ЈИМР ТО IT
Concentrated inorganic chemicals	Tychem [®] 2000 C	Comfortable, lightweight protection against biohazards and inorganic chemicals	Cat.III, Type 3-B, 4-B, 5-B, 6-B, EN 14126, EN 1073-2, EN 1149-5
Concentrated inorganic chemicals with superior garment design	Tychem [®] 2000 C Plus	Double zipper and double cuff system provides superior protection against biohazards and inorganic chemicals	Cat.III, Type 3-B, 4-B, 5-B, 6-B, EN 14126, EN 1073-2, EN 1149-5
Concentrated inorganic chemicals with Secondary Flame Resistance	Tychem [®] 2000 SFR	Designed to be worn over primary flame resistant (FR) garments when chemical splash and flash fire hazards exist	Complies with: ASTM F739; ASTM F903, Procedure C.; ASTM D6413; ASTM F1930
Supple protection against a broad range of inorganic and organic chemicals	Tychem [®] 4000 S	A new comfortable alternative against a broad range of inorganic and organic chemicals	Cat.III, Type 3-B, 4-B, 5-B, 6-B, EN 14126, EN 1073-2, EN 1149-5
Barrier technology	Tychem [®] 6000 F Plus	Innovative design with double zip and double cuff system to provide superior protection against organic chemicals.	Cat.III, Type 3-B, 4-B, 5-B, 6-B, EN 14126, EN 1073-2, EN 1149-5
High levels of protection, compatibility with respiratory equipment	Tychem [®] 6000 F FaceSeal	Rubber face seal, attached inner gloves, and rear entry design provides the wearer with enhanced safety performance	Cat.III, Type 3-B, 4-B, 5-B, 6-B, EN 14126, EN 1073-2, EN 1149-5
Gaseous substances	Tychem [®] 10000 TK	Protection against a broad range of toxic, corrosive gases, liquids and chemicals	Cat.III, Type 1a-ET

DuPont Product Range

The user shall be the sole judge for the correct combination of full body protective coverall and ancillary equipment (gloves, boots, respiratory protective equipment etc.) according to risk analysis performed when selecting the garments. Do not re-use the garments.

ProShield®			СLIСК ТО ЈИМР ТО ІТ
Limited particulate and liquid protection	ProShield [®] 20	Based on SMS technology, breathable lightweight coverall for entry-level Type 5, 6 protection	Cat.III, Type 5, 6, EN 1073-2, EN 1149-5
Flame retardant, limited particulate and liquid protection	ProShield® 20 SFR	The solution to protect you and your flame-resistant workwear underneath	Cat.III, Type 5, 6, EN 1073-2, EN 1149-5, EN ISO 14116
Limited particulate and liquid protection	ProShield [®] 60	Best in class microporous film at a highly economical price	Cat.III, Type 5, 6, EN 1073-2, EN 1149-5

6

Garment selection: A life saving choice

There are many different chemical protective suits commercially available, and although they are CE certified, there are very wide ranging performance differences for products meeting the same certification 'Types'. Faced with a bewildering choice and the complexity of the certification information, what criteria should be used to select the right protective clothing?

A short summary of the European standards for chemical protective clothing and a chemical protective clothing selection guide is provided to assist you in this task.

CE

CE Marking

To facilitate the choice of garment, the European Union has defined harmonised product standards for six levels of protection (referred to as 'Types') within Category III chemical protective clothing (see table on next page). The certification of a suit to a particular protection type represents its overall tightness against a particular form of exposure (gas, pressurised liquids, sprays and dust).

It should be noted that its certification does not necessarily mean that the suit is 100% impervious to this type of exposure. It only means that the suit meets the minimum requirements of the specific product standard. The manufacturer is also obliged to state the performance levels of the constituent materials and seams, known as performance 'Classes'.

7

Garment selection: A life saving choice CHEMICAL PROTECTIVE CLOTHING, CATEGORY III

OUPONT»

Pictogram [*]	Туре	Definition and Exposure Level	Product Standard
	TYPE 1 TYPE 1 - ET	GAS-TIGHT TYPE 1 – Protective clothing against liquid and gaseous chemicals, including liquid aerosols and solid particles. TYPE 1 - ET – Performance requirements for emergency teams.	EN 943-1
	TYPE 2	NON-GAS-TIGHT Protective clothing against liquid and gaseous chemicals, including liquid aerosols and solid particles.	EN 943-1
T3	TYPE 3	LIQUID TIGHT Protective clothing against liquid chemicals. Exposure to pressurised jet of liquid.	EN 14605/A1
*4	TYPE 4	SPRAY TIGHT Protective clothing against liquid chemicals. Exposure to a liquid spray aerosol (unpressurised).	EN 14605/A1
T5	TYPE 5	SOLID PARTICULATES Protective clothing against solid-airborne particulates.	EN ISO 13982-1/A1
16	TYPE 6	Limited protective performance against liquid chemicals. Potential exposure to small quantities of fine spray/mist or accidental low volume splashes and where wearers are able to take timely adequate action in case of contamination.	EN 13034/A1

* DuPont Pictogram.

Garment selection: A life saving choice

OTHER RELEVANT STANDARDS

149-5
073-2
D 14116
4126
) 20471
4594
18184
3795-1

* As standards are continuously revised the year of publication is subject to change. ** Antistatic treatments on DuPont chemical protective clothing are only effective in relative humidity >25% and when the garment and wearer are continuously and correctly grounded. *** Does not protect against ionizing radiation.

DUPONT COVERALL SELECTION GUIDE BY HAZARD AND APPLICATION

OUPONTE Tyvek. | Tychem. | ProShield.

	DuPont Garment	ProShield® 20 White	ProShield® 20 Blue	ProShield® 20 SFR	ProShield® 60	Tyvek® 400 Dual	Tyvek® 500 HV	Tyvek® 500 Safety Orange	Tyvek® 500 Xpert	Tyvek® 600 Plus	Tyvek® 800 J	Tychem® 2000 C	Tychem [®] 2000 SFR	Tychem® 4000 S	Tychem® 6000 F Plus	Tychem® 6000F Faceseal	1
	Application	Ŕ	Ŵ	Ŷ	Ŵ		Å	Ŷ		·		Ŷ	Ŕ	A	Ŕ	Ŕ	
Standards	Chemical Protective Clothing, Category III	Type 5, 6	Туре 5, 6	Туре 5, 6	Type 5, 6	Туре 5, 6	Туре 5-В, 6-В	Type 5-B, 6-B	Туре 5-В, 6-В	Type 4-B, 5-B, 6-B	Type 3-B, 4-B, 5-B, 6-B	Туре 3-В, 4-В, 5-В, 6-В	ASTM F739, ASTM D6413**	Type 3-B, 4-B, 5-B, 6-B	Туре 3-В, 4-В, 5-В, 6-В	Туре 3-В, 4-В, 5-В, 6-В	١
	Dirt and Grime	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Γ
	Low Visibility Areas (Night Work, Underground Mines, confined space)						•	•									
	Asbestos Fibre	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	Sanding and Grinding Dust	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	Silica, Cement, Carbon, Lead, Beryllium	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	Fibre Glass /Glass Wool	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	Mould Remediation	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Pharmaceutical Drug	Hazardous Dry Powders and Solids							•	•	•	•	•	•	•	•	•	
Flash Fire Exposure*	Methamphetamine / Pyrophoric Dust			•									•				
Heat & Flame*	Flame Resistance			•									•				
Radioactive Dust	NORMS & Depleted Radioactive Particles (Mines, Nuclear Power etc.)								•	•	•	•		•	•	•	
Combustible Dust (Metallic / Non metallic)	Additive Manufacturing, Coal Fired Power Plants, Wood Working, Recycling												•				
	Oil , Grease & Lubricant				•	•	•	•	•	•	•	•	•	•	•	•	
	Pesticides & Fertiliser							•	•	•	•	•	•	•	•	•	
	Spray Paint				•	•		•	•	•	•	•	•	•	•	•	
Hazardous Liquid Splash	Sewage & Effluent Treatment				•	•	•	•	•	•	•	•	•	•	•	•	
	Inorganic Acids, Caustics and Salts							•	•	•	•	•	•	•	•	•	
	Organic Solvents (eg. Hydrocarbons)											•	•	•	•	•	
	Carcinogens											•	•	•	•	•	
Vapours and Gases	(Toxic and Corrosive)															•	
Hazmat & Emergency Response	Spill & Contamination Control, Emergency & Disaster Management														•	•	
Healthcare	Bloodborne Pathogens (Blood, Saliva, Human Excrement, etc.)							•	•	•	•	•		•	•	•	
Pandemic Outbreak	Biological Agents/Substance (Ebola, Nipha, H1N1, COVID, etc.)							•	•	•	•	•		•	•	•	

The information provided above is a guide only. It is important to conduct a detailed assessment of hazard identification, levels of protection required, hazard toxicity, performance requirements, mechanical requirements, and comfort considerations prior to selection. This information is based on information that DuPont believes to be reliable. It is subject to change as additional knowledge and experience are gained. It is not intended as a substitute for any testing you may conduct to determine for yourself the suitability of your products for your particular purpose. Since conditions for use are outside the DuPont's control, DUPONT be INFORMING. DUPONT believes to be reliable. It is subject to change as additional knowledge and experience are gained. It is not intended as a substitute SUBSEC on the suitability of NOT LIMITED TO WARRANTES of MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND ASSUMES NO LIABILITY IN CONNECTION WITH ANY USE OF THIS INFORMATION. This information of as a lucense to operate under or a recommendation to infinge any trademark, patient or technical information of DuPont or other persons covering any material or its use. Detailed information on the permeation breakthrough times of chemicals for the coverall fabrics is available on www.safespec.dupont.asia

Preferred
 Acceptable

Australia Toll-free: 1800-789-308 New Zealand Toll-free: 0800-65-8080

ProShield® 20 SFR and Tychem® 2000 SFR provide secondary Fire Retardance (FR) and must be worn over a primary FR garment (eg. Nomex®). Tychem® 6000 FR provides primary FR protection. ** Tested to: ASTM F739; ASTM F903, Procedure C.; ASTM D6413; ASTM F1930. *** For Model TK 612T and TK 613T

Copyright © 2024 DuPont. All rights reserved. DuPont[™], the DuPont Oval Logo, Tyvek[®] and all trademarks and service marks denoted with [™], ^{su} or [®] are owned by affiliates of DuPont de Nemours, Inc. unless otherwise noted.

Garment selection: DuPont[™] SafeSPEC[™] Online Selector Tool

DuPont offers a range of support tools to assist with risk assessment and garment selection: ranging from webbased tools and on-site risk assessment support with DuPont Personal Protection specialists and chemists, to chemical permeation barrier testing for your specific chemicals.

SafeSPEC[™], our powerful online tool, can help you determine your most suitable protective garments among more than 1000 scenarios!

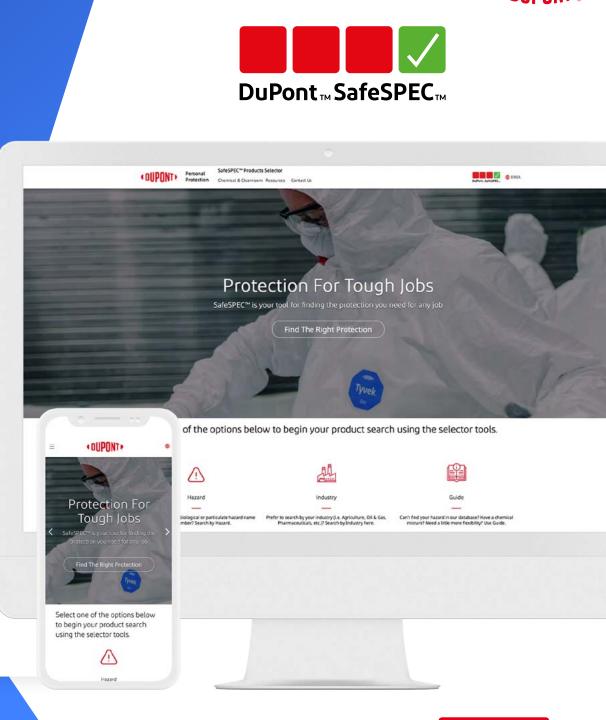
safespec.dupont.asia/anz

NEW

The SafeSPEC[™] Mobile App

GET IT ON

Google Play


Is now live globally, available on AppStore or Google Playstore in 8 languages.

Please download using the following links or by searching "Safespec"

Download on the App Store

OUPONT Tyvek.

Sustainability Initiatives

19

Sustainability Initiatives in Tyvek[®] Protective Apparel Business

PROTECTING PEOPLE AT WORK AND ADVANCING SUSTAINABILITY

From product development and manufacturing to packaging, distribution and marketing, we are focused on continuous innovation to advance sustainability along the value chain.

CLICK TO JUMP TO IT

Renewable Energy Use During Tyvek[®] Fabric Manufacturing

Tyvek[®] is produced using renewable electricity in our operations. DuPont achieved this milestone by purchasing renewable energy credits (RECs) and guarantees of origin (GOs) to match the energy consumed in its 2022 operations and is committed to additional purchases annually.

SINCE 2022

This underscores the company's commitment to achieving its renewable energy goal and acting on climate stewardship as part of its 2030 Sustainability Goals.

- Reduce our Scopes 1 and 2 greenhouse gas emissions 50% by 2030 from the 2019 base year and deliver carbon neutral in operations by 2050.
- Reduce our Scope 3 emissions from purchased goods and services and end of life of sold products by 25% by 2030 from 2020 base year.
- Source 60% of power to our operations from renewable sources by 2030 as part of our RE100 commitment.

SUSTAINABILITY EFFORTS IN OUR PROTECTIVE APPAREL PACKAGING : Packaging with PCR content^{*}

OUPONT

Fyvek

The packaging for DuPont[™] Tyvek[®], Tychem[®] and ProShield[®] garments are now being made with PCR (Post-Consumer Recycled) content^{*}, and will be gradually rolled out commencing in 2024.

While regulations are currently country specific in regards to PCR, DuPont is proactively working on the application of PCR content for the packaging of our entire chemical protective garment range. The aim is to reduce the usage of first grade polymers by using PCR raw materials. With this initiative and in line with our Sustainability Goals, DuPont Personal Protection contributes to the reduction of indirect GHG (Green House Gases) emissions. By purchasing these coveralls, you will also indirectly reduce the usage of virgin grade LDPE (Low Density Polyethylene) in packaging and help protect the environment.

Additionally, DuPont are also eliminating transparent outer bags used in our Tychem[®] garment packaging, which also contributes to the reduction of virgin polyethylene bags consumption.

• DUPONT • Typek •

) Garments & Accessories

Tyvel

Tyvek[®] 400 Dual

Protection and durability in the front breathability in the back.

- ✓ Tyvek[®] protection where you need it most.
- Large breathable SMS back panel from head to ankle for increased comfort.
- External stitched seams for enhanced protection against penetration from the outside to the inside of the garment.

* Does not protect from ionizing radiation.

Tyvek[®] 500 Xpert

Setting a new standard of protection in the Type 5 and 6 category through greater protection and comfort.

- ✓ High liquid and particulate protection.
- ✓ Exceptional design and comfort.
- ✓ Good breathability thanks to air and moisture vapour permeability.
- ✓ Overall ergonomic shape for ideal fit and protection when moving.
- ✓ Therapeutic Goods Administration (TGA): ARTG 342911
- ✓ Suitable for use in GMP class C/D (ISO Class 6-9) clean rooms

5X**

ving	Pesticides
terials	

olour: White Arton Size: 100 🏠		e k® 500 Xpert Tence: TY0198SW	HAX	Colour: Whi Carton Size:
4664003	SM	D15564326	3X	D15564331
5553613	MD	D15564327	4X	D15564342
5553614	LG	D15564328	5X**	D15565283
5553615	XL	D15564329	6X**	D15565284
5553616	2X	D15564330	7X**	D15565285

* Hazardous powders & cytostatic chemicals. **Made to order. *** Does not protect from ionizing radiation.

18

SM MD

XL

Reference: TYCHF5SWH00

SUSTAINABILITY EFFORTS IN OUR PROTECTIVE APPAREL PACKAGING : Tyvek[®] 500 Xpert Eco Pack packaging option

Significant reduction in consumption of packaging materials achieved during last 5 years.

Estimated avoided Environmental Impacts (for an order of **35000** suits shipped to France*)

	k® 500 Xpert (ence: TYCHF5SW	Carton Size: 100 🗊	
SM**	D15359234	XL	D15359261
MD	D15359243	2X	D15359276
LG	D15359254	ЗX	D15359284

3 tons of CO₂ equivalent

42 Sydney to Melbourne flights for one passenger.

820 kg of solid waste

Approximately 1 persons household waste for 1.5years

60 m³ of water 330 baths

77700 MJ of Primary Energy

26 Victorian housholds

*External study report on the environmental benefits of packaging reduction. **Made to order

Tyvek[®] 500 Safety Orange

Fluorescent Orange for Hi-Vis during the day

- Rated to the EN ISO 20471 High Visibility clothing standard, for both chromaticity and luminance
- High visibility that doesn't wash out: no laundry, no effect on colour, no need to monitor it.
- Particle, chemical, biological and antistatic protections in one coverall.
- ✓ Can replace your reusable high visibility clothing.
- ✓ Durability & breathability of Tyvek[®].
- Ideal when working in dangerous environments, darkness or poor weather conditions.

fety Orange 8SWHA0		Colour: Orange Carton Size: 50EA 🗊
2	2X	D15564076
3	3X	D15564077

D15564078

Tyvek[®] 500 Saf

Reference: TY019

D15564072

D15564073 D15564074

D15564075

SM

MD

Tyvek[®] | Garments & Accessories

< DUPONT >

Tyvek[®] 500 HV

High visibility that doesn't wash out!

- High visibility that doesn't wash out: no laundry, no effect on colour, no need to monitor it.
- Rated to EN ISO 20471 (High Visibility Clothing, Class 3), RIS-3279-TOM Issue 1 (day/night)
- All-in-one solution: high-visibility (to the highest class), chemical, biological and antistatic protections in one coverall.
- ✓ Can replace your reusable high visibility clothing.
- ✓ Durability & breathability of Tyvek[®].
- Ideal when working in dangerous environments, darkness or poor weather conditions.

Tvvek[®] 500 HV

Construction

undergrounds

Colour: Orange
Carton Size: 25 🕯

Refere	nce: TY0125SHV	Carton Size: 25 🗊	
SM**	D15522180	XL	D15522183
MD	D15522181	2X	D15522184
LG	D15522182	3X	D15522185

* High Visibility Clothing. RIS-3279-TOM Issue 1 (replaces GO/RT 3279 Issue 8). ** Made to order *** Does not protect against ionizing radiation.

Mining

EN ISO 20471 RIS-3279-TOM-1*

TYPE 5-B

TYPE 6-B

EN 1149-5

EN 1073-2*** Class 1

< DUPONT >

Tyvek[®] 500 HV


High visibility with respirator fit hood.

- High visibility that doesn't wash out: no laundry, no effect on colour, no need to monitor it.
- ✓ Retroreflective bands create a symmetric "X" on the back
- ✓ Rated to EN ISO 20471 (High Visibility Clothing, Class 3), RIS-3279-TOM Issue 1 (day/night)
- ✓ All-in-one solution: high-visibility (to the highest class), chemical, biological and antistatic protections in one coverall.
- ✓ Can replace your reusable high visibility clothing.
- ✓ Durability & breathability of Tyvek[®].
- Ideal when working in dangerous environments, darkness or poor weather conditions.

undergrounds

High vis	ibility	Waste	Handling	Rail industry
Constru	Ction	M	ining	Haintenance Operations
	k® 500 HV ence: TY127S			Colour: Orange Carton Size: 25 🍞
SM**	D15576904	1	3X	D15576909
MD	D15576905	5	4X**	D15576910
LG	D15576906	5	5X**	D15576911
XL	D15576907	7	6X**	D15576942
2X	D15576908	3		

* High Visibility Clothing. RIS-3279-TOM Issue 1 (replaces GO/RT 3279 Issue 8). ** Made to order *** Does not protect against ionizing radiation.

Tyvek[®] 500 HP

MODEL TY178S HP

The new Tyvek[®] 500 HP is designed to provide an enhanced barrier function to help protect the full-body harness and its wearer against external chemical threats^{*}!

- ✓ Wearer & harness protection at the same time:
 - helps to preserve the longevity of the full-body harness while working in hazardous conditions^{**} for the wearer.
- ✓ Unique & innovative design with off-centered zipper entry and 4 D-Ring connection options on the garment:
 - compatible with variety of full-body harness models;
 - ideal for a wide range of applications requiring the protection of the harness & wearer against contamination from particles and/or liquids**.
- ✓ Design validated by a long series of mannequin fall tests***.

Tyvek® 500 HP Reference: TY0178SWHHP			Colour: White Carton Size: 25 📦
SM*	D15573147	2X	D15573151
MD	D15573148	3X	D15573262
LG	D15573149	4X*	D15573263
XL	D15573150	5X*	D15573264

*Made to order. **The user must ensure the garment is suitable for the chemical hazard before use. Please refer to chemical permeation data & CE certification available in SafeSPEC[™] to help you determine the level of protection needed. ***Test concluding that wearing this garment over the full-body harness is not anticipated to affect the dynamic fall test performance of the full-body harness. **** Does not protect from ionizing radiation.

< DUPONT >

Tyvek[®] 600 Plus

Combining Type 4 performance with the durability, protection and comfort of a Tyvek[®] garment.

- Combines performance of a Type 4 with the comfort of a nonwoven suit.
- Stitched and overtaped seams, offering equal barrier as fabric.
- Hood shape and elastic around hood are designed for a tight fit around full face respirator.
- Tunnelled elastics, cuff, ankles and face help to reduce the risk of contamination.
- ✓ Therapeutic Goods Administration (TGA): ARTG 342912
- ✓ Suitable for use in GMP class C/D (ISO Class 6-9) clean rooms

Tyvek® 600 Plus Reference: TYCHA5TWH			Colour: White Carton Size: 100 📦
SM**	D13495782	2X**	D13395272
MD**	D13395307	3X**	D13495752
LG**	D13395299	4X**	D14981422
XL**	D13395284		

* Follow local medical device regulations ** Made to Order *** Does not protect from ionizing radiation.

EN 1073-2*** Class 2



< DUPONT >

The breathable Type 3 garment for protection against water-based inorganic chemicals under pressure.

- An effective barrier against many low-concentration, water-based inorganic chemicals (even under pressure), small-sized hazardous particles as well as oil repellent.
- ✓ Bright, over-taped seams aid wearer identification.
- Soft and lightweight fabric that is permeable to both air and water vapour.
- Ergonomic fit consistent with the shape and movement of the user.

* Does not protect against ionizing radiation. ** Made to order.

EN 1149-5

EN 1073-2* Class 2

EN 14126

£

EN 14126

Tyvek[®] 500 ACCESSORIES^{*}

Specially designed for use with Tyvek[®] apparel, Tyvek[®] 500 accessories can help offer enhanced protection for body parts that are more exposed to hazardous substances, or help protect processes from contamination.

TYPE PB [6-B]*

Tyvek[®] 500 Apron

CE Category & Type

Category III

Shin-length apron with neck and waist ties. (length 108 cm).

2 pockets. Elasticated cuffs (tunnelled).
Stitched internal seams.

Labcoat with collar. Zipper closure.

Tyvek[®] 500 Labcoat with

zipper and pockets

Tyvek[®] IsoClean[®] Bouffant

Bouffant for controlled environment. Elastic headband with serged seams.

Tyvek® IsoClean® Gown

Protective gown for controlled environment. Knit cuffs, Bound ties originating at cetre front waist with serged seams.

Reference: TYPL30SWH09 Colour: White Carton Size: 50EA SM** D13496004 XL D13398984 MD D13495983 2X D13495948 LG D13398951

All Tyvek* 500 accessories are supplied with an antistatic treatment. * Partial body protection. ** Made to order.

Reference:Colour: WhiteIC729SWH0BCarton Size: 250EA *One Size**D14246919

Reference: IC702SWH00		Colour: White Carton Size: 30EA 🗊
MD**	D15531629	
2X**	D15531630	

 Reference:
 Colour: White

 TYPA30SWHL0
 Carton Size: 100EA I

One Size D13396088

£

EN 14126

Tyvek[®] 500 ACCESSORIES^{*}

Specially designed for use with Tyvek[®] apparel, Tyvek[®] 500 accessories can help offer enhanced protection for body parts that are more exposed to hazardous substances, or help protect processes from contamination.

Tyvek[®] 500 Jacket

Hooded jacket with zipper closure and stitched internal seams.

Tyvek[®] 500 Trousers

Trousers without pockets, elasticated waist, no elastic at ankles. Stitched internal seams.

Tyvek[®] 500 Hood

Hood with flange and elasticated face and neck.

Tyvek[®] 500 Sleeve

TYPE PB [6-B]*

CE Category & Type

Category III

50 cm long sleeve. Adjustable arm opening. Stitched internal seams. Upper-arm in blue-coloured thread for identification purposes.

Reference : TYPT31SWHL0	Colour: White Carton Size: 50EA 🕯		
MD** D13496109	XL D13395735		
LG** D13395741	2X** D13496097		

Reference: Colour: White TYPH30SWHL0 Carton Size: 100EA ♥ One Size D13395804
 Reference:
 Colour: White

 TYPS32SWHLA
 Carton Size: 200EA ♥

 One Size
 D13398912

All Tyvek® 500 accessories are supplied with an antistatic treatment. * Partial body protection. ** Made to order

&

EN 14126

Tyvek[®] 500 Boot cover with antislip

Knee-length overboot. Elasticated top and fixation ties. Stitched internal seams. Slip-retardant sole.

Tyvek[®] 500 Shoe cover with antislip

Shoe cover. Elasticated ankle. Stitched internal seams. Slip-retardant sole.

Reference TYPOBAS		Colour: White Carton Size: 200EA 🗳
One Size	D1339598	39

Reference:
TYPOSASWH00Colour: White
Carton Size: 200EA To
36-4236-42D13398565**42-46D13398551

All Tyvek® 500 accessories are supplied with an antistatic treatment. * Partial body protection. ** Made to order

CE Category & Type

76

TYPE PB [6-B]*

Category III

/Vel

In the second se

Garments
 & Accessories

🞜 Back to summar

Tychem

Tychem[®] 2000 C

Comfortable, lightweight protection against biohazards and numerous inorganic chemicals.

- ✓ Protection against numerous concentrated inorganic chemicals and biohazards.
- ✓ Protective seams, stitched and over-taped with barrier-tape, providing barrier performance equal to that of the fabric.
- ✓ Double self-adhesive zipper flap offers high level of protection.

Tyvek® 2000 C Reference: TCCHA5TYL00		Colour: Yellow Carton Size: SM-3X 25EA 🎲 4X-5X 20EA 📦	
SM	D13494990	2X	D13395560
MD	D13494969	3X	D13494922
LG	D13395589	4X*	D15574226
XL	D13395699	5X*	D15574227

* Made to order ** Does not protect against ionizing radiation.

`3

'4/

ి. ి. '5

7 6

4

8

B

30

< DIIPINT>

Tychem[®] 2000 C Plus

Tychem[®] 2000 C barrier in new innovative design.

- ✓ Double zipper system with self-adhesive zipper flap offers an additional level of protection as well as permitting limited re-use if not contaminated.
- ✓ Double cuff system for good glove compatibility**.
- ✓ Protection against numerous concentrated inorganic chemicals and biohazards.
- ✓ Protective seams, stitched and over-taped with barrier-tape, providing barrier performance equal to that of the fabric.

Tyvek [®] 2000 C Plus			Colour: Yellow	
Refere	nce: TCCHZ5TYL00		Carton Size: 20 📦	
SM	D15334564	2X	D15334603	
MD	D15334570	3X	D15334618	
LG	D15334587	4X***	D15576031	
XL	D15334591	5X***	D15576372	

* Does not protect against ionizing radiation. ** Cuffs recommended to be taped to gloves for a tight seal. *** Made to Order

Category III

TYPE 6-B

EN 1073-2*

EN 14126

Tychem[®] 2000 SFR

Provides chemical and secondary flame protection in a lightweight garment.

- ✓ Tychem[®] 2000 SFR is specifically designed to meet the dual hazard needs of a protective chemical suit with secondary flame resistance.
- Designed to be worn over primary flame resistant (FR) garments (e.g. Nomex[®]) when chemical splash and flash fire hazards exist.
- ✓ The fabric used in Tychem[®] 2000 SFR garments is a unique technology. It doesn't char like traditional secondary flame resistant technologies. Instead, it was designed to shrink away from flame - without burning.
- ✓ Tychem[®] 2000 SFR garments yield a much lower predicted body burn level and much less afterflame than competing garments
- ✓ Tychem[®] 2000 SFR garments also provide an effective barrier against a range of inorganic acids and bases as well as industrial cleaning chemicals and particles.
- ✓ Garment design includes a Respirator-fit hood lined with ProShield[®] 6 SFR fabric, Taped seams, Nylon zipper with large metal puller, Chin flap and Storm flap zipper with double-sided adhesive tape, Covered and braided elastic openings at wrist for tighter fit, Outer boot flaps with elastic designed to cover boot tops to help reduce potential for liquid intrusion.
- ✓ Complies with: ASTM F739; ASTM F903, Procedure C.; ASTM D6413; ASTM F1930.

Chemical and flame

Emergency Chemical response processing

Oil and gas Mining/ Mineral processing Petrochemical

industry

Tychem [®] 2000 SFR Reference: QS127TGR00			Colour: Carton Size: 4 📦
SM*	D15526968	2X	D15526972
MD	D15526969	3X	D15526973
LG	D15526970	4X*	D15526974
XL	D15526971	5X*	D15526975

* Made to order.

Tychem® 4000 S

A comfortable alternative against a broad range of inorganic and organic chemicals.

- ✓ Offers a barrier to permeation for more than 100 chemicals.
- ✓ Double zip and double flaps permit limited re-use if not contaminated.
- Double cuff system for good glove compatibility***. \checkmark
- ✓ A comfortable garment specifically designed for ease-of-wear.

Tychem [®] 4000 S Reference: SLCHZ5TWH00		Colour: White Carton Size: 20🏶	
SM*	D15193449	XL	D15193473
MD	D15193451	2X	D15193481
LG	D15193467	3X	D15193494

* Made to order ** Does not protect against ionizing radiation. *** Cuffs recommended to be taped to gloves for a tight seal.

'4/

້. ເ 15

7 6

4

8

6

33

Tychem[®] 6000 F Plus

Tychem[®] 6000 F barrier in new innovative design.

- Protection against numerous toxic industrial organic chemicals, highly concentrated inorganic chemicals and biohazards. Chemical permeation data available for more than 250 chemicals.
- Smart design features: innovative hood which fits perfectly with full face masks, double cuffs, double zippers & double flaps.
- Inside knitted cuffs for enhanced comfort.
- Lightweight, durable Tychem[®] 6000 F fabric (<500 g per garment).
- The garment can be reused if it is not contaminated or damaged.

Mining/ Mineral processing Chemical processing

0 0
Shutdowns and
Maintenance

Tychem® 6000 F Plus Reference: TFCHZ5TGY00			Colour: Grey Carton Size: 10 🍞
SM**	D15344168	2X	D15344201
MD	D15344179	3X	D15344210
LG	D15344186	4X**	D15561711
XL	D15344191	5X**	D15561792

* Does not protect against ionizing radiation. ** Made to order.

arsigma Back to DuPont Product Range arsigma Back to summary 34

(

Tychem[®] | Garments & Accessories

< DUPONT >

Tychem® 6000 F WITH DISSIPATIVE SOCKS

Dissipative Socks smart solution that allows grounding of a wearer from inside through conductive shoes and floor without additional wiring.

- Tested according to EN 61340-4-5:2014 with adapted test conditions of air temperature 22 ± 1°C and relative humidity of 25±3% as per EN 1149-1 to evaluate earthing feasibility thru adequate footwear.
- Earthing through dissipative footwear as alternative to earthing cord.
- Hooded coverall with attached dissipative socks and boot flap. Stitched and over-taped seams. Thumb loops. Elasticated at the wrists, face and waist. Grey colour.

* Does not protect against ionizing radiation. ** Made to order.

Tychem[®] 6000 F **FACESEAL**

Tight design combined with trusted Tychem[®] protection.

- ✓ Tight design technologies: rubber seal around the mask offers good compatibility with full face mask and sealed in gloves for full body protection.
- ✓ No need for taping, enables faster donning in emergency situations and industrial applications.
- ✓ Rear entry with double flaps for enhanced safety of the wearer from frontal exposure.
- ✓ Attached dissipative socks with boot flap.
- ✓ Enables earthing of the wearer through dissipative boots without need for additional earthing cables.
- ✓ Specially for emergency responder teams who may stock the garments for longer periods of time, the manufacturing date is featured on the box packaging.

\sim	-
	5

response

Petrochemical

applications

Oil and gas

	(® 6000 F FaceS ence: TF0611TGYUC	Colour: Grey Carton Size: 1 🗊	
SM**	D15490341	2X	D15490598
MD	D15490481	3X	D15490650
LG	D15490467	4X**	D15490706
XL	D15490543	5X**	D15490762

* Does not protect against ionizing radiation. ** Made to order.

EN 1149-5

EN 1073-2* Class 1

EN 14126

clean -up

Chemical spill

Tychem® 10000

Effective barrier against more than 300 chemicals.

- Specifically developed to help protect against toxic and corrosive gases, liquids and solid chemicals.
- Out of the 300 chemicals tested, no observable breakthrough in tests for 270 chemicals after 8 hours of exposure.
- Puncture- and tear-resistant.

Oil and gas

Tyvek® 10	DOOO TK Colour	: Lime Yellow		
Reference	NFPA 1994 Class 2: TK612T (Fr NFPA 1994 Class 2: TK613T (Re			
	Level A: TK554T (Front Entry)			
	Level A: TK555T (Rear Entry)			
	Level B: TK527T (Front Entry)			
	Coverall with Sock boots: TK12	28T		
Size	SM to 6XL (All sizes are Made	to order)		

Tychem[®] 2000 C ACCESSORIES*

Tychem[®] 2000 C accessories can offer enhanced protection of body parts that are more exposed to hazardous substances.

Tychem[®] 2000 C Gown

Knitted cuff for better comfort. Double cuffs for increased protection and tighter connection with gloves. Mandarin collar for improved neck and throat area closure.

Tychem[®] 2000 C Apron

Shin-length apron with neck and waist ties.

Tychem[®] 2000 C Sleeve 50 cm long and with wide elastics at cuffs and upper arm.

CE Category 8	Туре	
	T3	A
Category III	TYPE PB[3-B]*	EN 14126

Tychem[®] 2000 C Boot cover

Knee-length overboot with slipretardant sole. Fixation ties. Sole is partially stitched: splashresistant, not fully liquid tight.

	rence: 290TYL00		ır: Yellow n Size: 25EA 📦
MD	D15546833	5X**	D15561718
2X	D15546834		

Reference: Colour: Yellow TCPA30TYL00 Carton Size: 25EA 📦 One Size D13984657

Reference: Colour: Yellow TCPS32TYL<u>00</u> Carton Size: 50EA 📦 One Size D13984632

Reference: TCPOBASYL00

Colour: Yellow Carton Size: 50EA 🃦

One Size D13984672

* Partial body protection. ** Made to order.

Tychem[®] 6000 F **ACCESSORIES***

Tychem[®] 6000 F accessories can offer enhanced protection of body parts that are more exposed to hazardous substances.

Tychem[®] 6000 F Gown

Knitted cuff for better comfort. Double cuffs for increased protection and tighter connection with gloves. Mandarin collar for improved neck and throat area closure.

Tychem[®] 6000 F Apron Shin-length apron with neck and waist ties.

Tychem[®] 6000 F Sleeve 50 cm long and with wide elastics at cuffs and upper arm.

CE Category 8	аТуре	
		®
Category III	TYPE PB[3-B]*	EN 14126

Tychem[®] 6000 F Boot cover

Knee-length overboot with slipretardant sole. Fixation ties. Sole is partially stitched: splashresistant, not fully liquid tight.

	r ence: 90TGY00	Colour: Grey Carton Size: 25EA 鄻
MD**	[*] D15546624	5X** D15561717
2X	D15546625	

Reference: Colour: Grev TFPA30TGY00 Carton Size: 25EA 📦 One Size D13984662

Reference: Colour: Grey TFPS32TGY00 Carton Size: 50EA 🍞 One Size D13984645

Reference: **TFPOBASGY00**

Colour: Grev Carton Size: 50EA 🃦

One Size D13396376

OUPONT DE PROShield.

) Garments

ProShield

Category III

TYPE 5

7 6

TYPE 6

Ľ

EN 1149-5

83

EN 1073-2*

Class 1

Based on an optimised SMS technology, **ProShield® 20 is a breathable lightweight** coverall for entry-level Type 5, 6 protection.

- ✓ Limited particle protection.
- ✓ High comfort level: high air and water vapour permeability.

ŶĨ

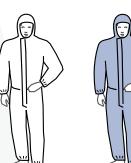
General maintenance

✓ Available in blue and white.

Dust and debris

Construction

	hield® 20 ence: PBCHF5SW	/H00	Colour: White Carton Size: 50 🍞
SM	D15338118	2X	D15338157
MD	D15338122	3X	D15338160
LG	D15338134	4X	D15536392
XL	D15338149		


	hield® 20 ence: PBCHF5SB	U00	Colour: Blue Carton Size: 50 🍞
SM	D15338174	2X	D15338211
MD	D15338185	3X	D15338227
LG	D15338191	4X	D15536391
XL	D15338209		

* Does not protect from ionizing radiation.

< OUPINT >

ProShield® 20 SFR

The solution to protect you and your flame-resistant workwear underneath.

- \checkmark Maximising wearer comfort: thanks to the open structure of its breathable non-woven SMS fabric.
- ✓ Non-halogenated flame-retardant non-woven fabric, free of substances of very high concern to be compliant with REACH regulations.
- ✓ Antistatic treatment on both sides^{***}.

Welding, gas and metal applications

Utilities and General

Maintenance

processing

Dust and debris

	h ield® 20 SFR ence: F1CHF5SWH		Colour: White Carton Size: 50 🛱
MD	D14591556	2X	D14591523
LG	D14591547	3X	D14591515
XL	D14591537		

* Does not protect from ionizing radiation.

- ** EN ISO 14116:2008 requires a tensile strength of >150 N. This garment has a tensile strength of >30 N only.
- *** Test conducted on certain FR fabrics and FR garments have demonstrated that antistatic properties reduce overtime. In the interests of safety, that's why we initially limit the shelf-life for the antistatic property of ProShield* 20 SFR to 18 months.

ProShield[®] 60

Best in class microporous film at a highly economical price.

- ✓ New pattern for a better fit.
- ✓ Good liquid repellency.
- ✓ Protection against low-medium concentrated water-based chemicals.

Dust and debris

General maintenance

Industrial cleaning and manufacturing Laboratories

	hield® 60 ence: P60127SW	′H00	Colour: White Carton Size: 50 🕯	
SM	D15519552	2X	D15519556	
MD	D15519553	3X	D15519557	

	D15519552	2X	D15519556
)	D15519553	3X	D15519557
	D15519554	4X	D15536384
	D15519555		

* Does not protect from ionizing radiation.

LG XL

> Appendices

OUPONT.

🞜 Back to summary

Content overview

- I. Garment selection: The 9-step guide from DuPont
- II. Appendix 1 CE markings, European standards and legislative framework
- **III.** Appendix 2 Protection against biological hazards
- IV. Appendix 3 Protective garments categories, types and classes
- V. Appendix 4 Fabrics types and properties
- VI. Appendix 5 Fabric testing
- VII. Appendix 6 Whole garment performance
- VIII. Appendix 7 Comfort considerations
- IX. Appendix 8 Static electricity discharge
- X. Appendix 9 Garment donning, doffing and adjustment
- XI. Appendix 10 Garment storage and expected life span
- XII. Appendix 11 Garment disposal and end-of-life options

Garment selection : The 9-step guide from DuPont

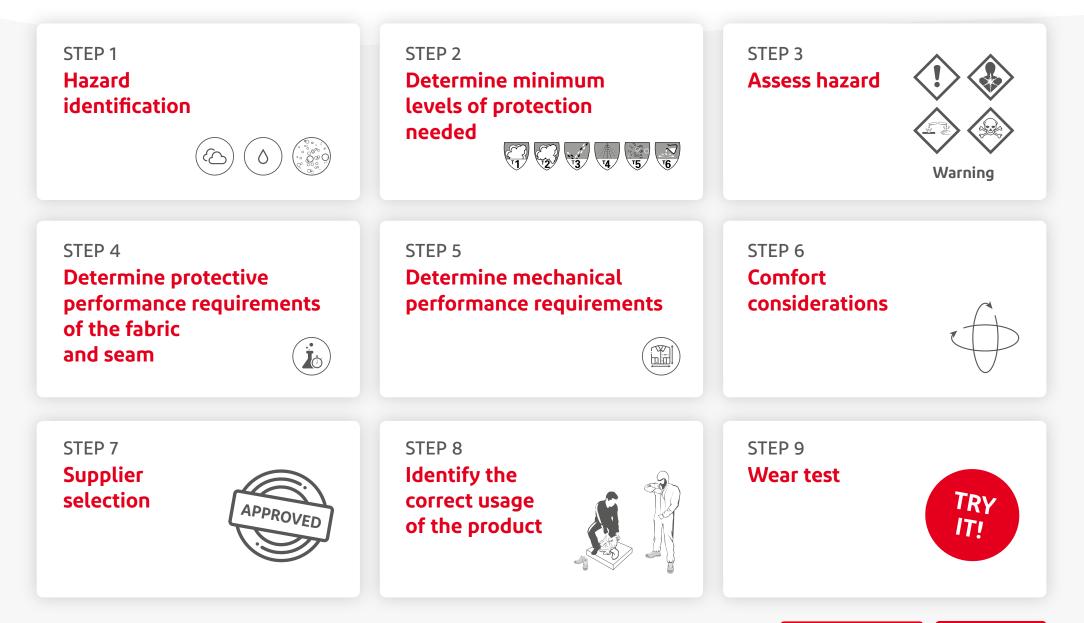
Faced with a huge array of potential hazards, a bewildering choice of protective clothing and the complexity of the certification information, what criteria should be used to select the right protective clothing?

This Selection Guide and the ensuing sections provide you with a summary of the European Standards for Personal Protective Equipment (PPE) and further information on which to base your decisions.

Workers can potentially be exposed to a multitude of workplace and environmental hazards. These include asbestos, dioxins, oils, lubricants, paints, blood and biological hazards, nuclear, phytosanitary products, organic chemicals, heat and flame risks and there are many different factors such as concentration, temperature, pressure that can have a significant influence on the risks posed by these threats. In addition, the physical nature of these threats can take many forms including liquid, gaseous, fine dusts, solid particles, fibres, sprays, aerosols, splashes and radioactive particles. Furthermore, in many workplace environments there are multiple protection requirements that need to be considered and, of course, every hazard environment and every exposed person is different. Which means that the choice of protective clothing has to take into account a host of physiological and psychological factors that combine to influence a garment's effectiveness and its 'wearability' in 'real life' exposure situations.

The fact that all of these complicated and interactive factors must be considered as a whole makes the selection of the optimum protective clothing an extremely difficult and daunting task. To ensure that all the appropriate precautions are taken requires thorough workplace risk assessments to be conducted at periodic intervals to ensure the short term safety and/or long-term health and well-being of the workers. This process of selecting, and regularly reviewing, protective clothing that is safe, effective and comfortable is an extremely important task and should never be overlooked or undervalued.

Within the context of an overall risk analysis **9 STEPS** presented on the next page, should be followed (in alignment with national legislation / recommendations) to arrive at the most appropriate protective clothing.


IMPORTANT

If you are new to protective clothing and do not know exactly which garment(s) you need, or if you require further information on garment selection please read this section first.

CLICK TO JUMP TO IT

Garment selection : The 9-step guide from DuPont

STEP 1 Hazard identification

The first step in selecting protective garments as part of a comprehensive personal protective equipment (PPE) programme is to conduct a detailed assessment of the working environment(s) concerned and the nature of the hazard(s) that are, or may be, present.

This risk analysis might take the following form:

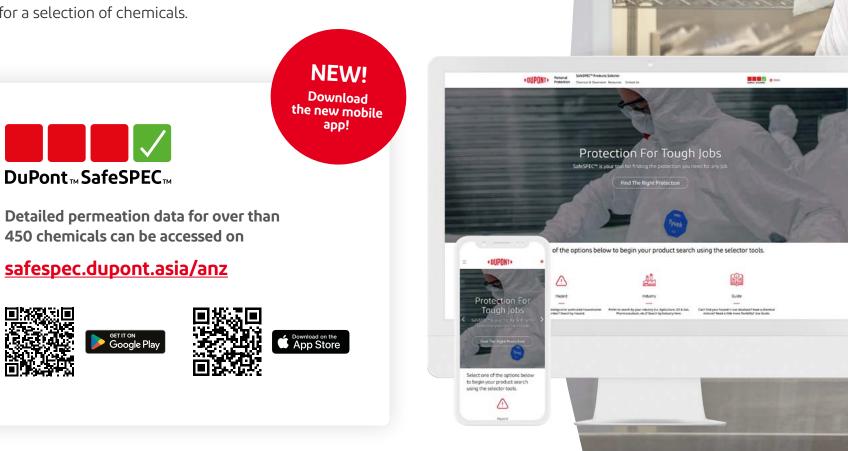
- Objectively identify the potential hazards including their sources and any associated trigger events. A suitable hazard assessment form or software package might be used for this purpose.
- 2. Determine those who might be affected by exposure to a hazard and in what circumstances.
- **3**. Evaluate the risks and what steps are available for prevention, mitigation and protection. At all times consult with operatives and their representative bodies.
- **4**. Incorporate the findings into a formal risk assessment document which can be shared, and expanded as necessary.
- 5. Put the risk assessment findings into practice, and make sure you have contingency plans in place for the unexpected.
- 6. Continuously re-examine procedures, training and equipment as necessary and periodically conduct a formal review of the entire risk assessment programme.

As part of this exercise the following are some of the questions that need to be asked:

- What is the hazard format? Is it a gas, a liquid, a vapour or a particle?
- Could the hazard react or change physical state during exposure?
- What is the toxicity level of the substance concerned?
- What is the quantity of the substance expected to contact the garment?
- How long are the operators likely to be exposed to the hazard?
- What other PPE will be used with the garment?
- What is the temperature and humidity in the working environment?
- What is the concentration of the chemical or substance involved?
- What kind of job do the people perform and what is the risk of exposure?

STEP 2

OUPONT


Determine minimum levels of protection needed

In other words, determine the degree(s) of exposure level(s) to identify a potential suitable minimum garment 'CE-Type'. The designation of six separate 'Types' of protection within CE Category III chemical protective clothing is intended to facilitate the selection as a function of the nature of the hazard exposure. Certification to a particular protection Type represents the tightness of the garment against a particular form of exposure (gas, liquid or dust). However it does not mean that the item is 100% impervious to this type of exposure.

STEP 3 Assess hazard

Knowing the toxicity or consequences of short- or long-term exposure to a hazard is essential. With this in mind, consider whether a coverall has been tested to the following standard: EN ISO 6529 which gives information concerning the chemical permeation and penetration of the fabric where the chemical is tested up to 480 minutes and a minimum of 10 minutes. Further assistance can be accessed in the Instructions for Use attached to DuPont products packaging, where you can find permeation data for a selection of chemicals.

Warning

OUPONT

Determine protective performance requirements of the fabric and seam

Seam construction

Seams are a critical component of the overall barrier protection provided by a chemical protective garment. It is vital to select the appropriate seam configuration for your application needs and to know that the garment will be constructed with strong, tight seams. One loose thread or gap and the barrier between you and your environment unravels—leaving you vulnerable.

Fabric

No matter what the brand or trade name, almost all limited-use protective apparel products can be classified into one of a few general fabric technologies. It is important to understand the performance attributes of the fabric being used for a given application. Why? Not all fabrics used in chemical protective garments are the same. From exclusive DuPont technologies such as DuPont[™] Tychem[®] and DuPont[™] Tyvek[®] to SMS and microporous film fabrics, DuPont offers a variety of fabrics with different levels of comfort, durability, breathability and protection to meet your specific needs.

In order to select the appropriate protective garment, it is crucial to know how well the fabric used in the garment provides a barrier to specific hazardous materials. Testing for chemical protective fabrics can be divided into two primary categories:

- 1. penetration testing appropriate for particle hazards
- 2. permeation testing appropriate for liquid and gaseous hazards

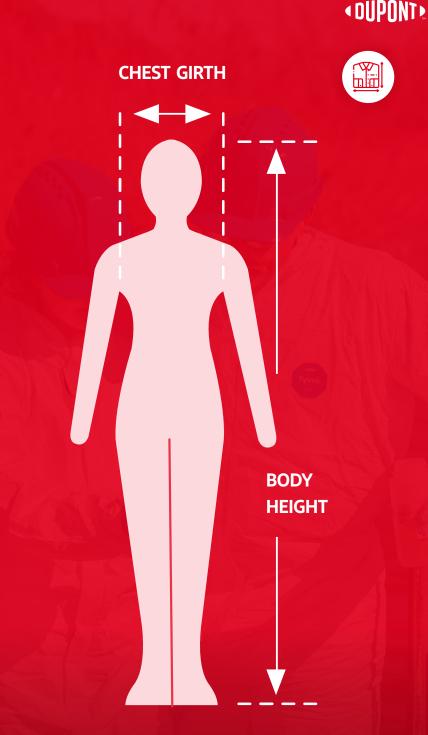
Penetration occurs when there is bulk movement of a material through a pore, hole, gap or defect in the fabric and is the proper method to evaluate particle barrier. Permeation, on the other hand, occurs when there is movement of the material through the barrier fabric on a molecular level. It is possible for a liquid or vapor to permeate through a fabric even when there is no observed opening in the fabric. Permeation testing is a more sensitive and representative way of characterizing the interaction of liquids and gases with the barrier fabric. Permeation testing is critical for fabrics that are exposed to hazardous liquids, vapors or gases.

STEP 5

Determine mechanical performance requirements

Fabric performance is critical, but it is only as good as the integrity of the garment itself. Excellent fabric barrier properties are only of value if they remain intact for the duration of the task and can withstand the working conditions. Consequently, in addition to the requirements for barrier performance, protective clothing must be considered from a 'whole garment' perspective taking into account factors such as the fabric's mechanical properties such as strength, abrasion resistance, susceptibility to tearing, and seam integrity. To assess these qualities it is highly recommended that all garments under consideration are subjected to wear trials under 'actual conditions' of use (<u>please see</u> **Step 8**).

Two important factors that contribute to protection-in-use (and overlap with comfort and ease-of-use considerations are garment sizing and garment fit (please see donning and doffing videos). The correct size and cut of a protective coverall has a huge impact on the protection provided to the wearer and is a significant determinant of comfort and ease of use. Garments must be available in a full range of sizes to suit different physical and gender characteristics, must be of a non restrictive, ergonomic fit, compatible with other PPE items, and yet not be so bulky as to present undue risk of snagging, tearing or tripping.


52

STEP 5

Determine mechanical performance requirements

BODY MEASUREMENTS CM/INCH

SIZE	CHEST GIRTH (cm)	BODY HEIGHT (cm)	CHEST GIRTH (inches)	BODY HEIGHT (feet/inches)
XXS	68 - 76	150 - 158	27 - 30	4'11'' - 5'2''
XS	76 - 84	156 - 164	30 - 33	5'1" - 5'5"
SM	84 - 92	162 - 170	33 - 36	5'4" - 5'7"
MD	92 - 100	168 - 176	36 - 39	5'6" - 5'9"
LG	100 - 108	174 - 182	39 - 43	5'8" - 6'0"
XL	108 - 116	180 - 188	43 - 46	5'11" - 6'2"
2XL	116 - 124	186 - 194	46 - 49	6'1" - 6'4"
3XL	124 - 132	192 - 200	49 - 52	6'3" - 6'7"
4XL	132 - 140	200 - 208	52 - 55	6'7" - 6'10"
5XL	140 - 148	208 - 216	55 - 58	6'10" - 7'1"
6XL	148 - 156	208 - 216	58 - 61	6'10'' - 7'1''
7XL	156 - 162	208 - 216	61 - 64	6'10" - 7'1"

53

OUPONT

Comfort considerations

Garment style

DuPont offers a wide variety of garment styles - from hoods and shoe covers to aprons, coveralls and fully encapsulated suits. Fully encapsulated suits are available with front or rear entry, with a flat back for airline accommodation or an expanded back for SCBA accommodation.

Effective protection is vital, but so is wearer comfort. When it comes to 'day-in day-out' health and safety compliance, operator comfort is one of the key 'human factors' that govern the correct use of Personal Protective Equipment (PPE). The importance of wear-comfort and correct garment fitting cannot be overstated. A large proportion of observed PPE non-compliance occurrences are not due to an absence of protection but are simply due to workers shunning, misusing or abusing the protection provided. And even where staff are wearing the appropriate equipment, if it doesn't fit or if it isn't comfortable then it is often being worn incorrectly. Identifying the appropriate protective and mechanical performance, yet, at the same time, maximising wearer comfort is a critical part of the selection equation and will significantly contribute to correct coverall use with optimised wearer satisfaction and productivity. As with protection-in-use (please see Step 5) it is essential that donning and doffing procedures are developed and practised (Step 8) and user wear trials (Step 9) are conducted to assess the perceived comfort-in-use of the garment(s) being considered.

STEP 7 Supplier selection

When evaluating protective garments on which the health and safety of workers depend it is important to take into account the the manufacturer's reputation, accreditations, strength of brand, business credentials, ethical standing and environmental record, in addition to the basic garment requirements. An exceptional manufacturer of protective clothing will actively embrace the principles of customer service and business integrity and these core values will be embedded throughout the organisation. It will be committed to the highest standards of quality, safety, respect for people, corporate governance and environmental stewardship all of which will have been translated into publicly-available policies and procedures.

At a product level the manufacturer should ensure that in addition to the highest standards of quality, the protective garments should not contain hazardous or banned ingredients or hazards to the ecosystem, and be REACH compliant. Garment production facilities, whether in-house or outsourced, must embrace the principles of safety, employee welfare and social responsibility and be managed and periodically audited to ensure compliance. The manufacturer should provide a high level of pre- and after-sales service and support ideally including training programmes, testing services, selection tools, risk-analysis guidance and permeation data.

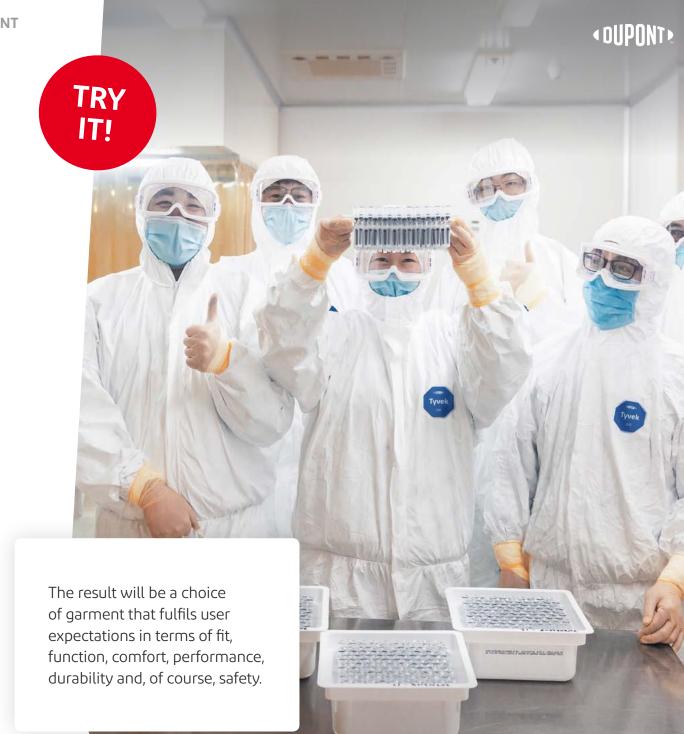
Some additional questions you might ask potential suppliers include:

- Does the company offer Customer Service support (technical support hotline, customer focused websites and tools, wear trials)?
- Does the company offer open access to product data e.g. can the company provide comprehensive permeation data for its products?
- Can it demonstrate exemplary case studies/user references?
- What is the product development process?
- Is Corporate Social Responsibility (CSR) one of the company's core corporate principles or business objectives? Does the company publish a CSR Policy or issue regular CSR reports?
- Does the company have a formal Sustainability Policy?
- Has the company publicized a Code of Conduct/Ethics?
- Is the company ISO 14001 registered for Environmental Management Systems?
- Does the company have a rigorous Quality Management System (QMS) in place and operate a Quality Management System to ISO 9001?
- What is the company's trading background?
- Is the company financially secure?
- How is the company perceived in the media?

55


OUPONT

Identify the correct usage of the product


Ensure proper training is provided for correct donning, doffing and usage and be aware of product limitations. Note that the manufacturer's Instructions for Use, sometimes disregarded or overlooked, can be a useful source of information on the correct use of the product and any limitations. Please make sure you answer questions, as for example:

- Is additional taping required e.g. to the mask, cuffs, ankles?
- Have earthing requirements been considered for the wearer and the coverall?
- Can the wearer come into contact with sharp surfaces that could damage the garment?
- Can the suit come into hot surfaces that could melt the fabric or open the seams (e.g. contact with hot pipes or steam cleaning)?
- Is a donning and doffing procedure required and does this procedure need training to avoid contamination when the garment is put on and removed?

STEP 9 Wear test

A detailed examination of technical performance data and product standards is only the first part of the product selection process. Once a product has been selected which meets the required performance criteria on paper it is then important to conduct 'in-use' wear trials to test and evaluate the product performance in use. This will include using the garments part of an appropriate PPE ensemble to ensure full 'in-use' compatibility under expected operating conditions. In these user tryout exercises endeavour to involve as many people as possible and ask them to complete a standard evaluation form at the conclusion of the trial. Depending on the nature of the work it may be necessary to conduct these trials over a period of days or even weeks in order to evaluate the performance of the garments under live conditions but this will be time well spent if it results in the correct and most cost efficient choice of protection. Please contact your DuPont representative or distributor to get a wear-trial form.

57

APPENDIX 1

CE markings, European standards and legislative framework

Duty of care

Employers have a Duty of Care to their employees and must take all reasonable and practicable steps to ensure the health and safety of staff in the workplace. This means that it is not sufficient to merely be in compliance with the basic health and safety legislation that is in place which might be unsuitable, inadequate or simply out of date. Employers are obligated to keep abreast with contemporary knowledge and technology and be fully conversant with potential workplace risks. Note that failure to comply with health and safety legislation can be a criminal offence and in particular, individual directors and company officers may have a personal responsibility and liability under certain national laws such as the UK Health and Safety at Work etc. Act 1974.

Regulations often impose absolute obligations on employers to put specific safety measures in place or to avoid particular hazards. As a consequence, employers are required to implement a management system for identifying and managing any exposures, or potential exposures, to risks and, in practice, this invariably means that adequate risk assessment exercises have to be carried out and documented on a periodic basis (please see Appendix 3).

Technical standards and their limitations

Standards, particularly international standards, play a vital role in ensuring that certain agreed and minimum standards of quality, interoperability and performance are

adhered to. This is in order to protect both the consumer and the environment, and to facilitate the transfer of trade and technology. However, although common standards play a huge role in the specification of protective apparel and other safety equipment, it is not possible to select protective clothing for a given hazard situation simply by relying on industry-wide standards or certifications.

This is partly due to the fact that there can be very wider anging quality and performance latitudes within a given Standard and these permitted margins can equate to big differences in product capabilities.

For example, there is a huge number of protective suits available commercially and although each may carry the European-wide CE mark, there are very wide ranging performance differences for products meeting the same certification "Type". For example for the Type 5, 80% inward leakage average results must be lower than 15% of inward leakage. The same applies to the different garment 'Classes' relating to nuclear particulate protection where the very broad performance spans of the three bands render them, at best, a very blunt instrument for evaluating the relative performance of different garments (please see Appendix 7 - Nominal Protection Factor).

From this it is easily seen that the allocation of a garment to a specific protection type does not necessarily provide an indication that all suits of this type offer the same protection. It is also important to understand that a CE mark in itself does not signify 'approval' of any kind. The former EU legislation in the form of Directive 89/686/EEC and new PPE Regulation (EU) 2016/425 make these limitations abundantly clear and in its own words says that the documents merely defines "the basic requirements to be satisfied by personal protective equipment". In other words it represents the 'bare minimum' rather than the ideal or preferred protective standard. Such standards therefore correspond to an absolute 'entry level' of garment performance and represent only a baseline, or starting point, for satisfactory garment selection. There are other limitations relating to standards which should also be understood. These include:

Standards, and international standards in particular, take a long time to develop, agree and harmonise. The requirement for lengthy consultation periods adds to the problem. The same applies to their subsequent review and revision. This means that standards tend to be quickly out of date and out of line with technological developments, modern safety criteria and the latest scientific knowledge in the market place.

Although some standards may be performance-driven, as opposed to specification-driven, and are claimed to be flexible enough to be independent of technical progress, in practice the "lowest common denominator" effect of standards can serve to mitigate against innovation and creativity. Their prescriptive nature tends to force manufacturers along set paths when there may be other options and solutions that are as good, or better than those dictated by a prescriptive standard.

- Compliance with a standard, while generally representing a minimum acceptable quality level, can confer unwarranted credibility and status to companies and products that are not necessarily of a good merit. An 'ISO' certificate, for example, is, in itself, no guarantee that a company manufactures superior quality products. It merely proves a degree of procedural compliance and this can be a misleading indicator.
- A blind adherence to standards can mitigate against the application of 'common sense' in situations where this is more appropriate.
- Due to their universality, international standards can be open to interpretation since they are enacted across many states (for example, in the case of CE marking, these apply across the entire 31 member states of the European Economic Area).
- International harmonisation results in an 'approximation' of existing national laws and can result in a dilution of some national standards which is detrimental to overall levels of safety.
- Users and specifiers can be lulled into a false sense of security by an over-reliance on published technical standards. The use of standards can lead to 'decision abrogation' and 'accountability transfer'effects due to a myopic over-reliance on the perceived safety attributes of 'certified' products.
- Compliance with standards, especially those involving inordinate amounts of paperwork or high financial outlays, can divert resources away from improving genuine quality and safety issues.
- By practical necessity, standards tend to be data-driven and based on 'recognised test methods', i.e. laboratory tests and simulations, and do not necessarily take into adequate account the real life and in-service aspects of product usage.
- Similarly, many standards are based on a necessarily limited amount of data and risk scenarios which reduces their applicability to all hazard situations.

Standards, therefore, supplement but are no substitute for a thorough assessment of hazards and the protective options available. All this, however, is not to downgrade the importance of standards. They are absolutely vital tools in establishing minimum safety and quality performance, of ensuring product and process consistency and repeatability, and in establishing cross-industry and cross-market compatibility. It is, however essential to be aware -of their limitations and never use them as an excuse for not conducting a proper evaluation of protective garments or any other PPE.

Mandatory Standards

EU directives such as former Council Directive 89/686/ EEC¹ and new PPE Regulation (EU) 2016/425 governing personal protective equipment that is placed on the market, are required to be embraced by companies operating in EU and EEC member countries and enshrined in national law. Such legislation is designed to facilitate the free movement of goods within the Community and ensure that certain basic health and safety requirements are met to protect the end-user (the 'essential requirements').

The general scope of EU Directives/Regulations such as this tends to be wide in nature and ranges from clothing and respiratory protective masks to safety footwear and fall arrest equipment. There are only a very few exclusions to this Directive and these generally relate to specialised equipment already covered by EU legislation.

ISO

An EN standard is essentially a regional Standard. Increasingly, however, European Standards (prefixed EN – European Norm) are being superseded, subsumed or harmonised with International Standards (prefixed ISO). ISO is the International Organization for Standardization which works to develop and translate standards at an international level. There is much co-operation and mutual adoption between ISO and the EU and mutually adopted standards bear the prefix 'EN-ISO'.

CEN

CEN (Comité Européen de Normalisation) is the European Committee for Standardization and is the non- profit body officially vested by the EU to develop cross-border EN standards and specifications. It operates alongside the European Committee for Electrotechnical Standardization (CENELEC) and the European Telecommunications Standards Institute (ETSI) to promote and deliver harmonised standards.

National Standards

These are the standards, such as British Standards (prefixed 'BS'), Deutsche Industrie Norms (prefixed 'DIN') or Norme Française 'NF', that prevail in individual countries. Increasingly, they are being superseded by their European equivalents, in which case they are referred to as 'BS-EN' or 'BS-EN' etc.). Similarly, a standard bearing the prefix 'BS-EN-ISO' refers to a standard containing the same core information in all cases and which has been adopted across all three territorial boundaries - a truly international standard.

Proprietary Standards

As we have seen, and despite their limitations, legislated standards are a powerful means of ensuring wholesale compliance with minimum levels of safety, quality and uniformity. However, commercially astute, customer-focused businesses will always endeavour to aspire to technical specifications, ethical behaviour and levels of customer support that are far in excess of any legal minima. In this way they can differentiate themselves from the 'only-just-good-enough' suppliers and demonstrate their superiority.

Notes

For Information relating to EU ATEX directives (potentially explosive atmospheres) please see Appendix 9. For a summary of the European standards for protective clothing refer to Appendix 7 from British Standards¹.

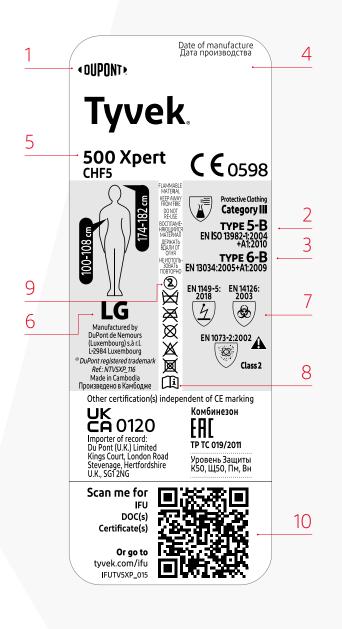
¹HSE online, European Standards and Markings for protective clothing, Appendix 7 (United Kingdom, HSE, 2013).

< DUPONT >

Interpretation of instructions for use and garment labels

The six Types of protection within Category III chemical protective clothing are intended to facilitate garment selection as a function of nature of the hazard exposure. Certification to a particular protection type represents the tightness of the suit against a particular form of exposure (gas, liquid or dust). However it does not mean that the suit is 100% impervious to a given type of exposure. The whole suit Type-tests merely define a maximum allowable amount of a challenge test liquid, aerosol or particulates to ingress into the garment.

For example, for the Type 5, 80% inward leakage average results must be lower than 15% of inward leakage. Allocation to a specific protection type is therefore not a sign that all protection suits of this type have the same barrier properties. Rather, protection offered by Type 5 suits can differ greatly in terms of the actual particulate barrier they provide, depending on the suit fabric, seam construction, design and whether the testing has been conducted with additional barriers, such as taping around the cuffs, ankles and hood/mask.


Quality Control

All CE-certified protective clothing has a marking (e.g. product label) and is supplied with a sheet of information by the manufacturer (i.e. Instructions for Use). The content of these two items is checked and released by the notified body that issued the CE marking for the product, and therefore these are official documents. The manufacturer is under obligation to have a Quality Control in place to ensure a regular monitoring of the fabric and garment performance vs the basic health and safety requirements of the Directive / upcoming Regulation.

Marking/labelling attached to garment

Protective clothing for chemicals shall be marked with at least the following information. The marking must be clearly visible and durable for the life of the clothing (please see an exemplary label).

- 1. the name, trademark or other means of identification of the manufacturer;
- 2. the Type classification, i.e. Type 6 for chemical splash-protective garments;
- the number and date of publication of European Standard for the type;
- 4. the date of manufacture;
- the manufacturer's type, identification or model number;
- 6. the size range (as defined in EN 340);
- a pictogram showing the clothing is for protection against various hazards (here protection against infective agents);
- a pictogram inviting to read instructions for use and any other information supplied by the manufacturer;
- 9. re-usable PPE to be marked with care pictograms according to ISO 3758. Limited life PPE is marked with the warning phrase 'Do not re-use' (please see also EN 340).
- **10**. QR code to access digital IFU (Instructions For Use), Declaration(s) of Conformity and Certificate(s)

APPENDIX 2 Protection against biological hazards

Introduction

Strict medical infection control is essential for preventing the spread of highly infectious diseases – and it is mainly the lack of such strict control in the countries most affected by the recent Ebola outbreak that has been responsible for its severity. In countries with high standards of public healthcare, the risk of transmission is generally considered significantly lower.

The use of personal protective equipment is an essential element of infection control for people responsible for care, treatment, transport, preventive measures and decontamination, not only for their own safety, but also for that of their environment.

Protection when handling biological agents

Whether in agriculture, the food industry, waste separation and recycling facilities, sewer systems or in the emergency services sectors, if workers come into contact with biological agents, safe and reliable protective clothing is essential to prevent infections and the spread of germs.

What are biological agents?

A comprehensive definition can be found in EU directive 2000/54/EC referring to the protection of workers from risks related to exposure to biological agents at work.

"Biological agents" refers primarily to micro-organisms such as bacteria, viruses and fungi. According to this directive, it also refers to biological materials, including those which have been genetically modified, as well as agents. What is important is that these substances can be pathogenic, sensitising or toxic. Biological agents have the ability to adversely affect human health in a variety of ways, ranging from relatively mild allergic reactions to serious medical conditions, including death.

What are the biological agent risk groups?

The aforementioned directive requires the classification of biological agents into four risk groups, according to their level of risk of infection^{*}:

	Biohazard Risk Group 1	Biohazard Risk Group 2	Biohazard Risk Group 3	Biohazard Risk Group 4
Table 1 Bio Safety Level	BSL1	BSL2	BSL3	BSL4
Description	Risk Group 1 organisms do not cause disease in healthy adult humans.	Risk Group 2 organisms can cause disease in humans, but the disease is treatable or preventable.	Risk Group 3 organisms cause serious disease in humans. Treatments and vaccines for these diseases may exist.	Risk Group 4 organisms cause deadly disease in humans, and they can eas- ily travel from one person to another. No treatments or vaccines exist for these diseases.
Examples	E. coli K-12, S. cerevisiae (yeast), Lactobacillus, B. subtilis	Streptococcus, Herpes virus, most mammalian cell lines	Yersinia pestis (black plague), HIV, SARS virus	Ebola virus, Marburg virus, Lassa virus

*A comprehensive classification of biological agents into risk groups is given in the annex of the EU directive 2000/54/EC.

Biological hazards

How do we come into contact with biological agents?

A wide variety of activities can bring you into contact with bacteria, viruses or fungi, for example:

1. The manufacture and use of biological agents (this includes, for example, isolation, production, propagation, use, processing, filling, transferring, mixing, supply and disposal).

2. Occupational contact with people, animals, plants, biological products, objects and materials (if this involves the release of biological agents and contact with them).

Protective clothing according to EN 14126:2003

According to the EU directive 2000/54/EC on Biological Substances, employers are obliged to make suitable protective clothing available to their employees. What clothing provides protection against biological agents?

The European standard EN 14126^{**} defines performance requirements for clothing materials to protect against infective agents. The test methods specified in this standard focus on the medium containing the microorganism; such as liquid, aerosol, or solid dust particle. Due to the heterogeneity of micro-organisms, the standard does not define performance criteria for specific types of micro-organisms. This subtle point needs to be considered in the risk assessment and with reference to the risk group of the infective agent itself. This European standard only refers to "materials" itself, with no infective-agent performance requirements on the seam. Since viruses, bacteria and spores are small enough to penetrate through the openings of sewn seams, suits with over-taped seams are recommended.

**Performance requirements and test methods for protective clothing against infective agents.

< DUPONT >

APPENDIX 3

Protective garments categories, types and classes

Instructions for Use - information supplied by the manufacturer

This information must accompany every item of chemical clothing or every individual commercial packaging unit. The purpose is to guarantee that the wearer is confronted with these instructions prior to use.

The information must be at least in the official language(s) of the country or region of destination. It must be unambiguous and, if helpful, illustrations, part numbers, marking etc. can be included. If appropriate, warnings should be given against any problems likely to be encountered.

The instructions together with the information on the marking needs to contain at least the following information.

- the name, trademark, or other means of identification, and address of the manufacturer and/or his authorized representative established in the European Union or the country where the product is placed on the market;
- the reference number of the European Standard for the Type;
- the Type, e.g. Type 6 for light chemical splashes protective suits;
- if applicable, additional items of personal protective equipment to be worn to ensure the level of protection needed and how to attach them;
- the manufacturer's type, identification or model number; the size range (as defined in EN 340);
- the names of chemicals and chemical products (including the names and approximate concentrations of the components) to which the protective clothing has

been tested. This will include the performance levels obtained for liquid repellency and penetration for each chemical tested. If additional information is available, a reference to where this information can be obtained (e.g. manufacturer's telephone, fax number or website) shall be added;

- all other performance levels, as specified in Type defining norm, preferably in a table;
- a statement that chemical protective garments have been tested to the whole-suit test;
- for re-usable items: the explanation of care pictograms according to ISO 3758 and additional information on cleaning and disinfection (please see also EN 340, 5.4);
- the expected shelf-life of the garment if ageing can occur;
 - information necessary for trained persons on:
 - application, limitations of use (temperature range, antistatic properties etc.)
 - tests to be carried out by the wearer before use (if applicable)
 - fitting
 - use
 - removal
 - maintenance and cleaning (including guidance for decontamination and disinfection
 - storage
- if applicable, a statement to advise that the prolonged wearing of chemical protective suits may cause heat stress

Instructions for Use	CS • Návod k použití
Gebrauchsanweisung	BG • Инструкции за употреба
Consignes d'utilisation	SK • Pokyny na použitie
Istruzioni per l'uso	SL • Navodila za uporabo
Instrucciones de uso	RO • Instrucțiuni de utilizare
Instruções de utilização	LT • Naudojimo instrukcija
Gebruiksinstructies	LV • Lietošanas instrukcija
Bruksanvisning	ET · Kasutusjuhised
Brugsanvisning	TR • Kullanım Talimatları
Bruksanvisning	EL • Οδηγίες χρήσης
Käyttöohje	HR • Upute za uporabu
Instrukcja użytkowania	SR • Uputstvo za upotrebu
Használati útmutató	RU • Инструкция по примене

DE •

FR ·

ES · PT ·

NL .

NO.

DA ·

SV • FI •

PL • HU•

© 2022 DuPont. All rights reserved. DuPont™, the DuPont Oval Log with™, ar or © are owned by affiliates of DuPont de Nemours, Inc. un	
Internet: dpp.dupont.com	Cert: Ref: Tyvek® 500 Xpert CHF5
DuPont de Nemours (Luxembourg) s.à r.L	May 2022/26/V2
L-2984 Luxembourg	DuPont Ref: IFUTV5XP_015

In accordance with PPE Regulation (EU) 2016/425, it is an employer's responsibility to lay down minimum requirements for the assessment, selection and correct use of personal protective equipment. Priority must be given to collective safety measures. The following table provides you with a rule of thumb of how to assess risk in the garment selection process:

The relationship between Garment categories, Types and Classes

Garment 'Categories'

PPE Regulation (EU) 2016/425 refer to three "Categories of PPE". These Categories are shown in the figure and demonstrate that the manufacturer of the product concerned has complied with the relevant performance requirements. In terms of protection, these categories relate to the protective properties of the entire garment where Category I offers the least protection and Category III relates to the highest protection. With Category III garments, in addition to the basic CE certification (according to Module B - Annex V of the PPE Regulation, the manufacturer must ensure the product continues to conform and meet the the declared performance EN Classes shown in the Instructions for use. Unlike Category I and II PPE, Category III PPE is subject to an annual audit by a Notified Body, which certifies continued conformity and issues a "Quality Surveillance Certificate" as per Module C2/D - Annex VII/VII of the PPE Regulation. Note that all Category III PPE must be identified with the digit code of the notified body appended to the CE mark.

Table 2Risk assessment determines required garment performance.		Table 3 Categories of PPE and compliance with garment performance requirements.						
Level of exposure	→	Garment type" please see Appendix 7	PPE Category (Regu- lation (EU) 2016/425)	Definition	Logo	Initial EC-Type Certification from a notified body (Module B -	Manufacturer's declaration of Confirmity (Annex IX'')	Annual Quality Surveillance Certification by a notified body (Module C2/D -
Hazard/toxicity	→	Fabric barrier properties				Annex V¨)	(Annex IX)	Annex VII/VIII ^{**})
hazara, toxicity		please see Appendix 4	Category III	Includes exclusively risks that				
Level of exposure	\rightarrow	Mechanical fabric properties please see Appendix 4	(PPE of complex design)	may cause very serious con- sequences such as death or irreversible damage to health	CE XXXX**	Mandatory	Yes	Yes
			Category II (neither simple nor complex PPE)	Protection against moderate risk where the product is tested for one value e.g. water resistant gloves or reflective tape for garments.	CE	Mandatory	Yes	Surveillance certific- ation required every 5 years or in case of product modification
			Category I (PPE of simple design)	Protection from minimal risks, self certification of products, exposure to dirt and grime e.g. gardening gloves, visitors' labcoats.	CE	Not required	Yes	Not required

¹OSHA online, Council Directive 89/656/EEC on the minimum health and safety requirements for the use by workers of personal protective equipment at the workplace

²European Commision online, Council Directive 89/686/EE on Personal Protective Equipment.

* Garment Type is linked to fabric barrier properties. ** Represents the 4 digit numeric code of the notified body.

Table 4	
---------	--

·5

TYPE 5

ک 6

TYPE 6

Protection Types in Category III,

chemical protective clothing.

Chemical Protective Clothing, Category III Product Standard Type and **Definition and Exposure Level** Pictogram^{*} and Year of publication Gas-Tight י<u>ן</u> זי. TYPE 1 – Protective clothing against liquid and gaseous chemicals, including liquid EN 943-1:2019** TYPE 1 aerosols and solid particles. EN 943-2:2019 TYPE 1 - ET TYPE 1 - ET – Performance requirements for emergency teams. Non-Gas-Tight Protective clothing against liquid and gaseous chemicals, including liquid aerosols EN 943-1:2019** **TYPE 2** and solid particles. Liquid Tight Protective clothing against liquid chemicals. EN 14605:2005/A1:2009 TYPE 3 Exposure to pressurised jet of liquid. Spray Tight Protective clothing against liquid chemicals. EN 14605:2005/A1:2009 **TYPE 4** Exposure to a liquid spray aerosol (unpressurised).

Solid Particulates EN ISO 13982-1:2004/A1:2010 Protective clothing against solid-airborne particulates.

Limited protective performance against liquid chemicals

Potential exposure to small quantities of fine spray/mist or accidental low volume splashes and where wearers are able to take timely adequate action in case of contamination.

Garment Types

To facilitate the selection of Category III protective clothing are split into six levels of protection ('Types') with each Type being associated with a defined 'level of exposure' have been defined. Type I represents the 'highest' level of protection down to Type 6 which generally offers the 'lowest'. The six exposure levels are designed to equate to different modes of exposure to increasingly serious threats and are a frequently referred-to when specifying protective coveralls.

When selecting or specifying a Category III garment it is often referred to by its CE 'Type' certification. However this is not sufficient for an appropriate garment selection. Different protective garments that all meet the standards do not necessarily offer the same protection performance (please see Appendix 4). Different protective clothing products produced in compliance to a specific CE 'Type' can exhibit very different protection, durability and comfort performance characteristics. The CE 'Type' designation simply implies that a suit has passed one or more of the defined 'whole-suit' tests and meets the minimum mechanical and barrier requirements.

* DuPont Pictogram. ** Amended in 2005.

EN 13034:2005/A1:2009

Other Relevant Standards

There are a number of other relevant PPE Standards that are applicable to protective clothing for particular applications and exposure hazards:

Table 5

Other relevant

PPE standards

Other Relevant Standards					
Pictogram	Definition	Standard and Year			
	Protective Clothing with Electrostatic properties – material performance and design requirements.	EN 1149-5:2018			
	Protective clothing against radioactive contamination.	EN 1073-2 :2002			
	Protective Clothing with protection against heat and flame-Limited flame spread materials, material assemblies and clothing.				
٢	Three 'Index' (levels) of protection are defined Index 1/0/0 → Index 1 performance, single use and no pre-cleaning or laundering. Index 1 materials limit the flame spread, but will melt and must always be worn on top of Index 2 or 3 garments.	EN ISO 14116:2008			
	Protective clothing (fabrics) against infective agents (indicate by a 'B' e.g. Type 3-B) and comprising several fabric protection test methods.	EN 14126:2003			

Notes

For information on radioactive particulate protection please see Appendix 7.

Fabric 'Classes'

In addition to the overall garment performance, the European standard for each garment Type also specifies a number of minimum performance requirements, known as the performance Class for the constituent fabrics and seams. These performance properties include technical attributes such as abrasion resistance, puncture resistance, tensile strength, and chemical permeation and penetration (please see Appendix 5). Each fabric property has usually between 1 and 6 performance Classes where Class 6 relates to the highest performance and Class 1 to the minimum performance requirement. This classification system for the fabric helps specifiers to differentiate between different functional characteristics.

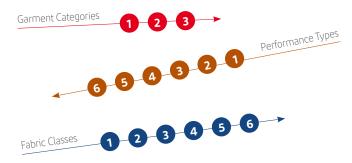
These mechanical properties are a very important part of the protection equation because they introduce a 'durability' factor into the garment appraisal. Because fabric barrier tests are conducted on brand-new garments under static conditions, they do not indicate whether a barrier property will be maintained over time under real working conditions. Protective garments must perform from the moment they are put on to the moment they are taken off and in an operating environment they can be subject to stresses which might compromise the protective performance e.g. by abrasion or tearing.

* As standards are continuously revised the year of publication is subject to change.

** Antistatic treatments on DuPont chemical protective clothing are only effective in relative

humidity >25% and when the garment and wearer are continuously and correctly grounded.

*** Does not protect against ionizing radiation.


Table 6	Mechanical	performance	tests.
---------	------------	-------------	--------

	Test method	Norm	Scope/Principle
	Abrasion resistance	EN 530 Method 2	Abrasion is the physical destruction of fibers, yarns, fabrics resulting from the rubbing of the fabric suface over an abrasive glass paper. It ultimately affects the appearance of the fabric and results in the loss of performance properties after a number of cycles.
	Flex cracking resist- ance	EN ISO 7854 Method B	Flex cracking simulates repeated flex and folds in the fabric. The number of cycles to failure indicated by cracks and holes is recorded.
Durability	Tear resistance	EN ISO 9073-3	Tear resistance determines the trapezoid tear resistance of a fabric by applying a con- tinuously increasing extension in such a way that a tear propagates across the width.
	Tensile strength	EN ISO 13934-1	Tensile strength determines the maximum force and elongation at maximum force of the fabric using a strip method. The fabric is extended at a constant rate until it ruptures.
	Puncture resistance	EN 863	Puncture records the maximum force required to push a spike through the fabric with a constant rate until it perforates.
	Seam strength	EN ISO 13935-2	Seam strength determines the maximum force of sewn seams when the force is applied perpendicularly to the seam which is extended until it ruptures.
Protection	Penetration by liquids	EN ISO 6530	Gutter test method determines indices of penetration, repellency and absorption by applying a fine stream of a test liquid to the surface of a clothing material resting in a inclined gutter.
	Permeation by liquids	EN ISO 6529 Method A	Permeation test method determines breakthrough detection time at normalized per- meation rate and cumulative mass by analysing quantitatively the chemical concen- tration that has permeated after initial continuous contact with the chemical.
	Surface resistance	EN 1149-1	Antistatic test method is intended for materials used for electrostatic dissipative pro- tective clothing to avoid incendiary discharge. A potential is applied to an electrode assembly rested on the fabric placed on an insulating base plate and the resistance of the fabric is recorded. The lower the resistance, the better the electrostatic dissipation performance.

A word of caution

It can be seen that there is a degree of inconsistency between the three classifications in that both the garment EN Categories and the fabric Classes use a rating scale where Level 1 represents the lowest level of protection and the highest number represents the highest level of protection. Paradoxically, however, the garment Type scale works the other way round with a Type 1 classification, i.e. the lowest number, referring to the highest level of protection! This anomaly can be very confusing to the specifier or user and it can be helpful to use some form of mnemonic or visual Aid Memoire to avoid mistakes.

Figure 1 Visual Aid Memoire on garment Categories, performace Types and fabric Classes, **Source:** DuPont

g/m²

μm

kPa

S

cm H₂O

m².Pa/W

EN ISO 536

EN ISO 534

EN 20811

ISO 2758

ISO 5636-5

EN 31092

APPENDIX 4 Fabrics types and properties

Some of the physical properties of PPE fabrics are categorised under the fabric Classes mentioned in Appendix 3. Whole garment performance is covered in Appendix 7. For information on fabric test methods *please see Appendix 5.*

Differents fabric properties

No matter what the brand or trade name, the majority of limited-use protective clothing products can be classified into one of a small number of broad fabric technologies. Although they may look the same, it is very important to realise that, in practice, these different technologies exhibit widely varying performance attributes. As a result a garment specifier or user must have a clear understanding of the technical properties of the various materials that might be considered for a given application.

Some protective fabrics, such as DuPont[™] Tychem[®] and DuPont[™] Tyvek[®] employ advanced proprietary technologies that have been specifically developed to provide a wide range of performance and comfort options to suit particular needs. Other fabrics are typically based on generic nonwovens and microporous films.

In order to select the appropriate protective garment, it is essential to understand how effectively a particular fabric performs as a barrier to specific hazardous materials. For details of Penetration Testing and Permeation Testing please refer to Appendix 4. To compare the physical attributes of the Category III garment Type 3, 4, 5 or 6 refer to the following table which shows minimum requirements for CE properties vs Type and informational characteristics.

Table 7

Minimum requirements for CE properties versus Type and informational characteristics.

	Test method	Norm	Unit	Туре б	Туре 5	Туре 4	Туре 3
	Abrasion resistance	EN 530 Method 2	cycles	Class 1 >10 cycles	Class 1 >10 cycles	Class 1 >10 cycles	Class 1 >10 cycles
	Flex cracking resistance	EN ISO 7854 Method B	cycles	Х	Class 1 >1000 cycles	Class 1 >1000 cycles	Class 1 >1000 cycles
Durability	Tear resistance	EN ISO 9073-3	Ν	Class 1>10 N	Class 1>10 N	Class 1>10 N	Class 1>10 N
Δ	Tensile strength	EN ISO 13934-1	Ν	Class 1>30 N	Х	Class 1>30 N	Class 1>30 N
	Puncture resistance	EN 863	Ν	Class 1>5 N	Class 1>5 N	Class 1>5 N	Class 1>5 N
	Seam strength	EN ISO 13935-2	Ν	Class 1>30 N	Class 1>30 N	Class 1>30 N	Class 1>30 N
	Penetration by liquids	EN ISO 6530	%	Class 2<5%	Х	Х	Х
ction	Penetration by tiquids	EN ISO 6530	%	Class 3>95%	Х	Х	Х
Protection	Permeation by liquids	EN ISO 6529 Method A	min	Х	Х	Class 1>10 min	Class 1>10 min
	Surface resistance	EN 1149-1	Ω	<2.5E+09 optional	<2.5E+09 optional	<2.5E+09 optional	<2.5E+09 optional
	Charge Decay	EN 1149-3	S	<4s optional	<4s optional	<4s optional	<4s optional

Informational properties

Resistance to water penetration

Basis weight

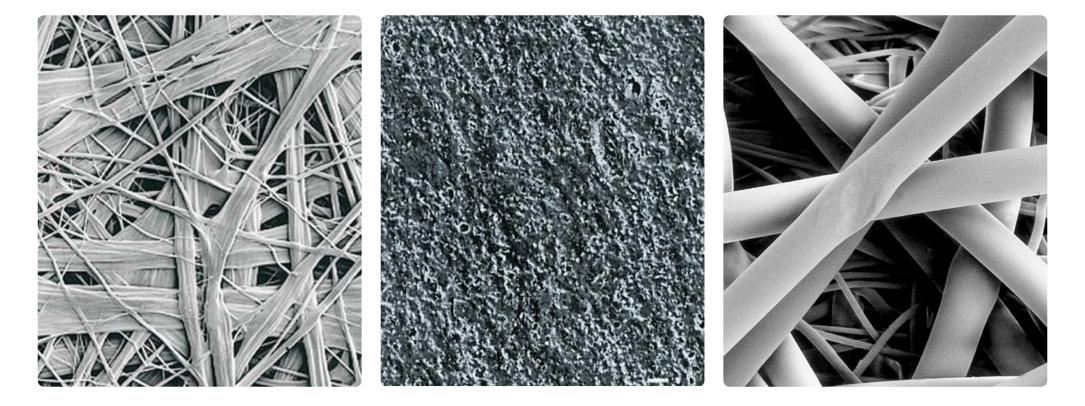
Bursting strength

Air permeability (Gurley)

Water vapour resistance. Ret

Thickness

DuPont[™] Tyvek[®]


Manufactured by a flash-spinning process, Tyvek[®] fabric is made of strong, continuous, high density polyethylene fibres. The fibres are thermally bonded into a tight, homogeneous and soft fabric that is intrinsically breathable, does not shed fibres ('linting') and has inherent barrier properties i.e. not reliant on a thin applied coating or layer. This unique combination of barrier protection and inherent breathability makes Tyvek[®] an ideal fabric for a wide range of protective applications.

Microporous Film (MPF)

MPF fabrics are a bi-laminate material comprising a thin microporous film bonded to a spunbound polypropylene base. These fabrics offer limited durability since all barrier protection is lost when the protective film layer is abraded. In addition, their low air-permeability characteristics make then much less breathable than other fabrics with all this implies in terms of poor wearer-comfort and heat control.

Spunbound/Meltblown/Spunbound (SMS)

The performance of SMS fabrics relies on a meltblown polypropylene layer sandwiched between two open spunbound polypropylene layers. This inner polypropylene layer functions as the main filter for particles. However SMS fabrics tend to suffer from limited durability and relatively weak barrier performance due to their relatively open fibre structure. In addition, their high air permeability characteristics significantly compromise the barrier properties of the fabric making it only really appropriate for very basic protection and as a dirt barrier.

Source: DuPont.

APPENDIX 5 Fabric testing

Mandatory Tests

A CE marking signifies that chemical protective clothing meets certain minimum requirements (please see Appendix 1). However, it does not mean that chemical suits of the same Type offer the same level of protection performance. This is why it is essential to look at the results of the tests carried out on the material used to make the garment. As part of the CE requirements a number of mandatory fabric tests are required and, for each Type, these are classified from Class 1 (lowest) to Class 6 (highest). For further information please see Appendix 3.

The following are the mandatory tests for mechanical performance that must be carried out on a fabric:

Table 8 Mandatory tests for mechanical performance.

	Test method	Norm	Scope/Principle
	Abrasion resistance	EN 530 Method 2	Abrasion is the physical destruction of fibers, yarns, fabrics resulting from the rubbing of the fabric suface over an abrasive glass paper. It ultimately affects the appearance of the fabric and results in the loss of performance properties after a number of cycles.
	Flex cracking resistance	EN ISO 7854 Method B	Flex cracking simulates repeated flex and folds in the fabric. The number of cycles to failure indicated by cracks and holes is recorded.
Durability	Tear resistance	EN ISO 9073-3	Tear resistance determines the trapezoid tear resistance of a nonwovens by applying a continuously increasing extension in such a way that a tear propagates across the width.
Ō	Tensile strength	EN ISO 13934-1	Tensile strength determines the maximum force and elongation at maximum force of the fabric using a strip method. The fabric is extended at a constant rate until it ruptures.
	Puncture resistance	EN 863	Puncture records the maximum force required to push a spike through the fabric with a constant rate until it perforates.
	Seam strength	EN ISO 13935-2	Seam strength determines the maximum force of seams when the force is ap- plied perpendicularly to the seam which is extended until it ruptures.

Penetration vs Permeation

Penetration is the physical process whereby a liquid or solid passes through a material via "micropores", i.e. microscopic holes, in the fabric. It is especially relevant when referring to the particle penetration of a fabric or a whole suit. It is important to understand liquid penetration and repellency test data is generated during a 60 second test only. Consequently, it is only of value in the selection process to exclude those fabrics that allow chemicals to immediately penetrate. In order to assess whether a fabric protects the wearer against a specific chemical for durations exceeding 60 seconds, the permeation data must be consulted.

c chemical for durarmeation data must the other surface (inside). The standard test duration for permeation is up to 8 hours or until permeation has been detected.

Table 9 Type 6 certified garments - tests.

Permeation is the process by which a chemical, in the form of a liquid, vapour or gas, moves through protective

clothing material at a molecular level and this 'molecu-

lar creep' can occur without any visible trace. This means

it is possible for a liquid or vapour to permeate through

a fabric even when there is no observed breaches or

perforations in the fabric. The permeation process progresses in three steps: the substance is absorbed by the

outside surface of the material: its molecules then diffuse

	Test method	Norm	Scope/Principle
	Penetration by liquids	EN ISO 6530	Gutter test method determines indices of penetration, repellency and absorption by applying a fine stream of a test liquid to the surface of a clothing material resting in a inclined gutter.
Protection	Permeation by liquids	EN ISO 6529 Method A	Permeation test method determines breakthrough detection time at normalized permeation rate and cumulative mass by analysing quantitatively the chemical concentration that has permeated after initial continuous contact with the chemical.
	Surface resistance	EN 1149-1	Antistatic test method is intended for materials used for electrostatic dissipative protective clothing to avoid incendiary discharge. A potential is applied to an electrode assembly rested on the fabric placed on an insulating base plate and the resistance of the fabric is recorded. The lower the resistance, the better the electrostatic dissipation.

Notes:

Fabrics used in garments certified to Type 6 are typicallyonly tested for liquid penetration and repellency. This is why the scope of type 6 garments is intended for applications with "potential exposure to small quantities of fine spray/mist or accidental low volume splashes and where wearers are able to take timely adequate action in case of contamination". Therefore, it is preferable to verify the permeation data of the fabric even for Type 6 garments. Permeation and Penetration should not be confused. Many 'microporous' fabrics which can offer good liquid repellency characteristics, i.e. low penetration properties, exhibit high permeation rates which means liquids, in practice, will quickly permeate through.

Chemical Permeation Test

The Chemical permeation of a material is tested according to the European standard EN ISO 6529. The resistance of a protective clothing fabric to permeation by a potentially hazardous substance is described by the determination of breakthrough time using the permeation rate as a cut-off.

- 1. Sorption of molecules of liquid onto the contracted (outside) surface.
- 2. Diffusion of the sorbed molecules across.
- 3. Desorption of the molecules from the opposite (inside) surface.

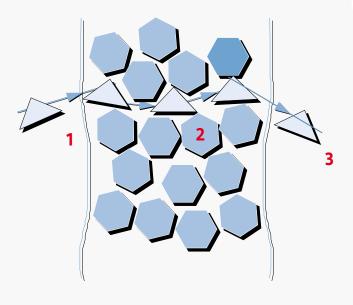


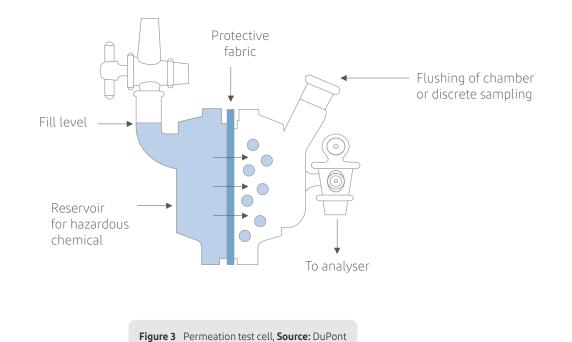
Figure 2 Permeation, Source: DuPont

The permeation test cell

The permeation test cell consists of two chambers that are separated by the fabric to be tested. The outside surface of the test fabric is exposed to the chamber containing the test medium (liquid or gaseous substance). Breakthrough of the substance is determined by measuring the concentration of the substance reaching the collection chamber per time unit.

Permeation rate

This is the speed at which the test substance permeates through the test fabric. Permeation rate is expressed as mass of the test substance (μ g) flowing through the fabric area (cm²) per time unit (min).


Steady State Permeation Rate (SSPR)

The SSPR is the level where the permeation rate reaches a maximum and continues at that. This is the state when all forces affecting permeation have reached equilibrium.

Minimum Detectable Permeation Rate (MDPR)

This is the minimum permeation rate that can be determined in the test. MDPR is a function of the sensitivity of the analytical measurement technique, the volume into which the permeated chemical is collected and the sampling time.

Minimum detectable permeation rates can be as low as $0.001 \,\mu\text{g/cm}^2/\text{min}$ in certain cases.

OUPONT

Barrier Breakthrough

The barrier or 'stopping' properties of a fabric are measured in terms of 'breakthrough time'; the time taken for a chemical or hazardous substance to penetrate completely through a fabric.

Normalised breakthrough time

The classification of permeation data – as defined by EN 14325^{1} – is based upon the normalised breakthrough time measured according to EN ISO 6529^{2} at 1.0 µg/cm²/min. Normalised breakthrough time is the average elapsed time between initial contact of the substance with the outer surface of the protective clothing material and the time at which the substance is detected at the inside sur-

face at a defined permeation rate. The breakthrough time is 'normalised' as it is independent of the sensitivity of the measuring device. A normalised breakthrough time of >8 hours means that the average permeation rate has never reached the rate defined according to EN ISO 6529 (0.1 μ g/cm²/min or 1.0 μ g/cm²/min). However, the substance may have actually broken through.

Actual breakthrough

Actual breakthrough time is the average time elapsed between initial contact of the chemical or hazardous substance with the outer surface of the clothing material and the detection of the chemical on the inner surface by a measuring device. A permeation rate of 'ND' (not detected) does not necessarily mean that breakthrough cannot occur or has not occurred. It simply means that permeation was not detected after the test observation time of eight hours. Permeation may indeed have taken place, but at less than the minimum detectable permeation rate (MDPR) of the measuring device. MDPR can vary depending on the sensitivity of the analytical device for the given substance.

Notes:

Breakthrough time alone is not sufficient to determine how long a garment may be worn once it has been exposed to contamination. Safe user weartime may be longer or shorter than the breakthrough time depending on the permeation behaviour of the substance, its toxicity and the exposure conditions. In case of mixtures, permeation is measured for the most toxic substance since permeation cannot be measured for chemical mixtures. Account must be taken of the fact the permeation characteristics of mixtures can often deviate considerably from the behaviour of the individual chemicals. Furthermore, permeation rates are temperature dependent and typically increase with a temperature rise.

Table 10 Normalized breakthrough time and EN Class.

Normalized breakthrough time at a permeation rate of 1.0 µg/cm²/min in minutes	EN Class
> 10	1
> 30	2
> 60	3
> 120	4
> 240	5
> 480	6

1 EN 14325:2004 - Protective clothing against chemicals. Test methods and performance classification of chemical protective clothing materials, seams, joins and assemblages.

2 EN ISO 6529:2013 - Protective clothing. Protection against chemicals. Determination of resistance of protective clothing materials to permeation by liquids and gases. * EN 14325: Protective clothing against chemicals – test methods and performance classification of chemical protective clothing.

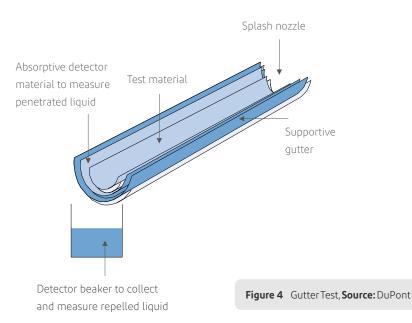
Liquid penetration and repellency test

The liquid penetration and repellency test is performed according to EN ISO 6530¹ (superseding EN 368) and is often referred to as the 'Gutter Test'.

Schematic of the test apparatus

In this test, the protective material to be tested is placed in an inclined gutter (45°) which is lined with an absorptive detector fabric. 10 ml of liquid is applied in 10 seconds onto the top of the test material via a syringe needle.

Penetration index


Any liquid which penetrates the fabric via the fabric pores within 1 minute is absorbed by the detector fabric and expressed as percentage of the original quantity and is a measure of the penetration of the fabric.

Repellency index

The amount of liquid collected in the beaker after 1 minute is expressed as percentage of the original quantity and is a measure of the repellency of the fabric. Note that EN ISO 6530 only requires four chemicals to be tested. Caution should be applied when interpreting penetration results since the test simulates exposure to small amounts of chemicals (10 ml) and short time (1 minute) only. Furthermore, for volatile chemicals it should be considered that some of the test substances would have evaporated during the test which can falsify the penetration data obtained. This is why EN ISO 6530 states that volatile substances (and their results) have to be identified as such. A protective clothing material with excellent results in the penetration test may give only poor protection when exposed to the same chemical in larger quantities and/ or for extended time. To determine whether a protective clothing material with a low penetration index is really a protection against a specific liquid chemical, the chemical permeation data needs to be consulted.

Chemical mixtures

Permeation characteristics of a mixture of chemicals can often deviate considerably from the behaviour for the individual chemicals. If protection against a mixture of hazardous chemicals is required, we recommend you contact the manufacturer for expert advice.

No chemical permeation data for your chemical?

DuPont can facilitate the independent permeation testing of your specific chemical or chemical mixtures with the DuPont barrier fabrics.

¹EN ISO 6530:2005 Protective clothing. Protection against liquid chemicals. Test method for resistance of materials to penetration by liquids.

Protective clothing against infective agents

Protective clothing against infective agents has to prevent infective agents from reaching the skin and to prevent the spreading of infective agents to other people and other situations, e.g. eating or drinking, when the person has taken his protective clothing off. The European Standard EN 14126 specifies requirements for clothing materials providing protection against infective agents. The test methods specified in this standard focus on the medium containing the micro-organism, such as liquid, aerosol or solid dust particles. EN 14126 comprises the following material tests: Protective suits made of EN 14126 compliant fabrics must also meet the whole suit requirements specified in the relevant chemical protective clothing "Type" standard. They must be CE Certified as Category III and can be identified by the biohazard pictogram. The clothing Types to protect against biological agents are broken down as follows:

Protection against infective agents Table 11 Table 12 (EN 14126) test methods. Test method Scope/Principle Norm The material is subjected to a body fluid simulant (synthetic blood) for Resistance to penetration by a specified time and pressure sequence. A visual observation is made to blood and body fluids using ISO 16603 determine when penetration occurs. The highest pressure with no visible synthetic blood penetration of synthetic blood is recorded. The material is subjected to a nutrient broth containing a virus for a specified Resistance to penetration by time and pressure sequence. Visual detection is supplemented with an assay blood-borne pathogens using ISO 16604 procedure that will detect viable viruses which penetrate the material even Phi-X174 bacteriophage when the liquid penetration is not visible. Biobarrier The test method involves superimposing the bacterial contaminated donor Resistance to penetration by (Staphylococcus aurus) material onto the fabric and subjecting it to mechanical EN ISO 22610 contaminated liquids rubbing. Due to the combined effect of rubbing and liquid migration, bacteria may spread from the donor material through the fabric down to the agar surface. The test method exposes a material to a bacterium (Staphylococcus aurus) suspended in an aerosol and sprayed onto both an unshielded filter and one Resistance to penetration by ISO/DIS 22611 shielded with the test material. The ratio of bacteria found on the shielded contaminated aerosols (bacteria passed through) and unshielded (background bacterial count) filter is used to assess the barrier properties of the test material. A portion of talc contaminated with Bacillus subtilis spores is poured on the fabric and captured on a sedimentation plate (Petri dish) after vibration for Resistance to penetration by ISO 22612 contaminated solid particles 30 minutes. After 24h incubation of the sedimentation plate, the number of colonies produced are counted.

Protective clothing Types according to EN 14126:2003.

Туре	Description	Relevant standard
1a-B, 1b-B, 1c-B	Gas-tight	EN 943-1:2019, EN 943-2:2019
2-B	Non gas-tight	EN 943-1:2019, EN 943-2:2019
3-B	Protection against pressurised liquid chemicals	EN 14605:2005 +A1:2009
4-B	Protection against liquid aerosols (spray tight)	EN 14605:2005 +A1:2009
5-B	Protection against airborne solid particulates	EN ISO 13982-1:2004 +A1:2010
6-B	Limited protection against liquid chemicals (light spray)	EN 13034:2005 +A1:2009

DuPont Personal Protection offers protective suits which cover all four risk groups as well as Types 3 to 6. Depending on the form of biological agent, the levels of exposure, the nature of the work and the risk of infection, the barrier performance of the fabric to the relevant infective agent test(s) should be considered.

The type of seam and the material's mechanical robustness also needs to be taken into consideration. For instance, in the case of viruses, such as Ebola, performance with regard to their resistance to penetration by bloodborne pathogens (ISO 16604) is key.

APPENDIX 6 Whole garment performance

'A chain is no stronger than its weakest link' is a principlethat strongly applies to protective garments. A first class barrier fabric will be severely compromised if it forms part of a coverall with weak seams, unreliable closures and poor ergonomics. For this reason it is important that whole-garment tests are conducted to indicate protective performance and wearability in use.

The presence of a CE-mark on a coverall signifies that the garment complies with the safety requirements of the European PPE Directive /PPE Regulation (EU) 2016/425 and in the case of a Category III suit will include the registration number of the Notified Body, in the form 'CE- - - -', that certifies ongoing fulfilment.

Type Testing

In accordance with the EU CE requirements (please see Appendix 1), chemical protective (Category III) clothing is subdivided into six levels or 'Types' of protection (please see Appendix 3) each carrying a Type-test certificate relating to tests for different kinds and degrees of hazard exposure. In order to be certified as offering a particular 'Type' of protection, a fabric's physical and barrier properties must also meet minimum performance requirements (please see Appendix 4) and for Types 3, 4, 5 & 6, the whole suit itself must be tested to a minimum of one of the whole suit 'Type' tests and pass a dynamic movement test.

A word of caution

The EN whole-suit Type-tests (please see Appendix 4) define a maximum allowable amount of challenge test liquids, aerosols or particulates to ingress into the suit.

Example

CE0598

Category III

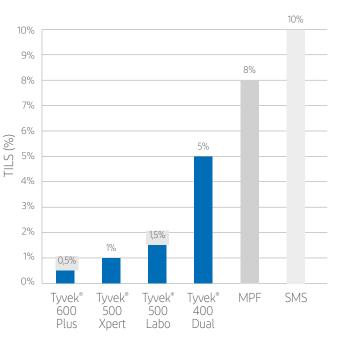
EN 1073-2:2002

Class?

ndent of CE marking

Комбинезо

TP TC 019/201 Уровень Защиты К50, Щ50, Пм, Вн


EHC

EN 1149-5 2018 EN 14126 2003

For example, for the Type 5, 80% inward leakage average results must be lower than 15% of inward leakage. For the Type 6 low level spray test, penetrationspots at a maximum of 3 cm² of the test liquid are allowed on the undergarment.

In other words, allocation to a specific protection Type is not a sign that all protection suits of this type have the same barrier properties. Rather, protection offered by Type 5 suits can differ greatly in terms of the actual particulate barrier they provide, depending on the suit fabric, seam construction, design and whether the testing has been conducted with additional barriers, such as taping around

the cuffs, ankles and hood/mask. Only by having a look at the detailed results can a user arrive at conclusions with respect to the actual barrier and impermeability properties of a given suit of a particular Type.

The suits were tested with a full face mask, boots and gloves taped at mask, cuffs, ankles and flap.

Figure 8 Total Inward Leakage (TILS): Average of the 10 suits and all activities EN ISO 13982 - (1 and 2). Dry particles Sodium Chloride NaCl 0,6 µm, Source: Independent Institute

CE

UK

Whole-suit Type Tests

For a abridged description of the conditions of the wholesuit Type tests please refer to Appendix 2 – The Relationship between Garment Categories, Types and Classes.

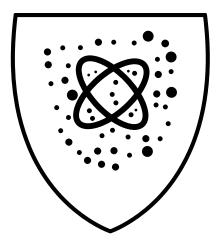
Radioactive particulate matter is dust and very fine particles which have been exposed to ionising nuclear radiation. Unless contained and managed these contaminated particulates not only present a serious health hazard to any personnel in proximity but, without proper safeguards, there is a further risk of radioactive particulates being inadvertently transferred elsewhere, for example to uncontained workplace areas. This is due to the ease with which microscopic radioactive particles can attach to clothing, footwear, tools and other items in the exposure zone and then be subsequently dispersed unknowingly into 'safe' environments.

EN 1073-1 and EN 1073-2

Chemical protective garments are intended for single use so that a cross-contamination with radioactive particles can be minimized. DuPont offers specially designed garments that help provide protection from radioactive particles and liquids. Specific fabric types, seam configurations and garment designs should be specified to match the hazard. In general, more body coverage is better: Hooded coveralls (with attached socks) or fully encapsulated coveralls help to protect the entire body from radioactive particulates. DuPont[™] Tyvek[®] 500 Xpert, Tyvek[®] 600 Plus, Tyvek[®] 800 J, Tychem[®] 2000 C Standard, as well as Tychem[®] 6000 F Standard garments & Tychem[®] 6000 AL are tested according to EN 1073-1 or EN 1073-2 as protective clothing against radioactive contamination. EN 1073-1 standard is designed for compressed air line ventilated protective clothing, protecting the body and the respiratory tract, and EN 1073-2 for non-ventilated protective clothing against particulate radioactive contamination.

EN 1073-1: requirements & test methods for compressed air line ventilated protective clothing, protecting the body & the respiratory tract

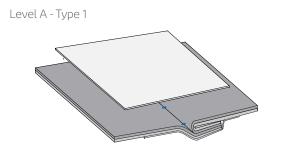
The tests are run in a cabin containing very fine salt particles with an operator wearing a ventilated protective clothing while doing a series of movements. The particles measured inside the coverall (both in the respiratory area and in body) will be compared with the particle concentration within the cabin (outside of the coverall) to assess the nominal protection factor (NPF).


There are five types of performance class to describe the suit particle protection level: Class 1 = the lowest particle barrier with a NPF of 2000

Class 5 = the highest particle barrier with a NPF of 50000

EN 1073-2: requirements & test methods for nonventilated protective clothing against particulate radioactive contamination

The EN 1073-2 standard was developed with the nuclear industry in mind, but does not apply for the protection against ionizing radiation. The 1073-2 standard itself is very similar to the Chemical Protective Clothing Type 5 standard (EN ISO 13982-1). With respect to whole suit particle protection levels, both standards reference the testing protocol "Protective clothing for use against solid particulates - test method of determination of inward leakage of aerosols of fine particles into suits" (EN ISO 13982-2). This test essentially determines the barrier efficiency of the suit when challenged with sodium chloride particulates of a defined size distribution. The results are then used to determine both a performance classification and a "nominal protection factor", analogous to respiratory standards.For EN 1073-2, when tested according to EN 13982-2, six suits are tested. The total inward leakage results (TIL) are reported, as a ratio (in %) of the test particle concentration inside the suit & the test chamber.There are three types of performance class to describe the suit particle protection level: Class 1 = Lowest particle barrier with a NPF of 5Class 3 = Highest particle barrier with a NPF of 500

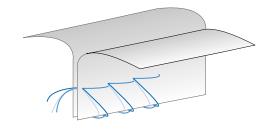

For further information, on the EN 1073-1 and EN 1073-2, please refer to our technical flyer on nuclear risks.

Seam construction and performance

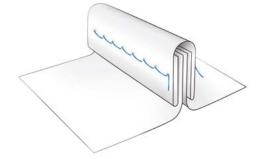
Garment seam design and quality is a very important consideration. All protective garments employ seams in their construction and due attention must be devoted to ensuring that the seam technology employed is up to requisite standard. It is not enough for a garment to be manufactured using the best barrier fabric if the seams are weak or leak. Different seaming configurations and connection systems are available which provide the necessary strength and impenetrability for different hazard and usage situations. The same considerations apply to closure systems such as zips and storm flaps, and to garment interfaces and boundaries in the neck, hood, wrist and ankle areas.

All Category III chemical protective clothing must undergo a seam strength test as well as the relevant "whole suit" inward leakage test. Tight, reliable seams are an absolutely critical element in the overall barrier protection performance of a garment therefore when selecting a garment, it is important to verify the seam performance in addition to the fabric performance. Just because a seam is tight doesn't mean that it is impermeable and vice versa. Stitched seams on their own, for example, are never so fully tight that gas or particulates cannot penetrate. By properly overtaping a stitched seam, however. it can be made as tight and strong as the parent fabric material.

Stitched & Double Taped Seam

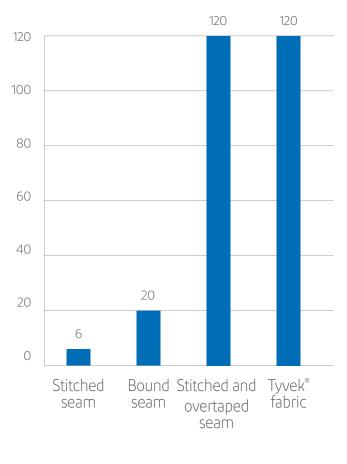

Seams can be stitched and overtaped double sides. The tapes used for DuPont product with this tape of seam offer a barrier equal to that of the fabrics.

Stitched & Overtaped seams


Seams can be stitched and overtaped. The tapes used for DuPont products with this type of seam offer a barrier equal to that of the fabrics.

Type 5/6

Stitching offers good balance between seam strength and seam barrier.


Bound seams

Seam construction leaves the needle holes visible. Construction is unlikely to offer permeation barrier equal to the fabric.

OUPONT

Pressurised exposure resistance

Hydrohead is an indicator for pressurised exposure resistance. The test is based on water column test, stichted and overtaped seams are tight and offer the same barrier as the fabric itself.

N=16 specimens tested

Figure 10 Pressurized exposure resistance. Hydrohead DIN EN 20811 (centimeters of H₂O), Source: DuPont

Permeation results

Based on permeation test, stitched and overtaped seams are tight and offer the same barrier as fabric.

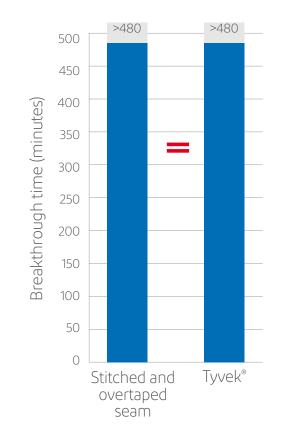


 Figure 11
 Permeation
 EN
 ISO
 6529
 with
 Sulfuric
 acid
 18%
 (BT 1.0 normalized breakthrough time at 1.0 μg/cm²/min.),
 Source:
 Independent laboratory

OUPONT

APPENDIX 7 Comfort considerations

Key comfort factors

Comfort is a somewhat subjective and personal matter but some key comfort factors frequently cited in wearer trials include:

- Garment design: ample freedom of movement when bending/stretching.
- Breathability: ability of the garment to allow sweat to evaporate and provide moisture vapour permeability.
- · Feel on the skin, softness. Garment weight.
- Wearing undergarments such as cotton that absorb sweat improves the "feel" on the skin.
- · Wearing long-legged and long-sleeved undergarments.

Garments with air and moisture vapour permeability will be more comfortable than non-breathable materials and coated fabrics but this is usually at the expense of particulate or chemical barrier properties.

The need for comfort

When it comes to day-in day-out health and safety compliance, operator comfort is one of the key 'human factors' that govern the correct use of personal protective equipment (PPE). The importance of wear comfort and correct garment fitting cannot be overstated. A large proportion of observed PPE non-compliance occurrences are not due to an absence of protection but are simply due to workers avoiding, misusing or abusing the protection provided. And even where staff are wearing the appropriate equipment, if it doesn't fit or if it isn't comfortable then it is often being worn incorrectly¹.

Discomforting costs

While providing necessary protection to the user, the wearing of PPE (personal protective equipment) invariably creates an impediment to worker performance, communications and comfort. In some cases the provision of personal protection comes at a high cost in terms of operator comfort and efficiency and, unless carefully managed, these are conflicts that can lead to field operators being exposed to further risks and for a tendency for otherwise effective workwear to be shunned, used incorrectly, or unofficially modified.

Finding the optimum balance

PPE misuse may just be just down to a momentary lapse of attention but that's all it takes for yet another casualty to be added to the workplace accident statistics. Fatigue, restricted movement, reduced dexterity, impeded vision, low tactile sensitivity and even annoying fabric rustle, are just some of the reasons that cause workers to shun, abandon or misuse protective equipment. The secret rests in finding the optimum balance between comfort and protection, between safety and productivity, between fit and functionality.

High performance PPE ensembles, while providing effective chemical protection, can serve to introduce new risks relating to physiological and psychological stresses. For example the life-threatening dangers of hyperthermia (heat stress) from unventilated protective garments are well documented. Similarly, the psychological impacts associated with wearing constrictive, bulky and sometimes claustrophobic worksuits are perhaps less well documented but every bit as real. Anything which can negatively affect the judgement of an operative in a highly dangerous, highly stressful environment must be taken very seriously.

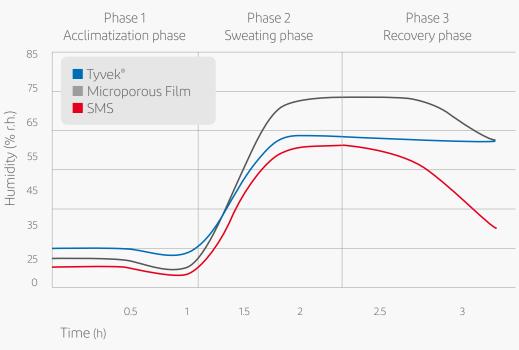
¹ Health and Safety Laboratory for the Health and Safety Executive, Human factors that lead to non-compliance with standard operating procedures, 2012.

Size matters

Comfort, safety and productivity are partly a function of garment size and fit. A full range of coverall sizes is absolute necessity since there is a clear correlation between fit and function when it comes to protective coveralls. For example, by comparison, a single size of footwear or gloves cannot be expected to fit an entire workforce. Garments that are either too big or too small introduce unnecessary risks. Loose, non-breathable fabrics will contribute to a 'bellows effect' potentially causing unwanted air exchanges between the worker and his/her surrounding environment and will be easy to snag, awkward to wear and potentially restrict the wearer's vision. On the other hand, tight body-hugging coveralls will tend to expose the body's extremities, will be dangerously stressed during bending and stretching movements, will significantly impede movement and be very uncomfortable to wear.

Garment cut

Be aware that low-cost coveralls will often skimp on the cut to reduce fabric usage and this can have unacceptable consequences. Over-tight garments will pinch and pull, the fabric will be unduly stressed, they will be uncomfortable to wear, they might restrict movement and the seams can be stretched and break or open up and lose their efficacy. It is not only comfort and efficiency that is at stake, the worker's health and safety will be unnecessarily put on the line.


The Tyvek[®] barrier fabric from DuPont uses a proprietary non-woven fabric structure to provide a protective fabric that actually allows moisture vapour to pass through.

The material is formed from High Density Polyethylene (HDPE), with diameters as low as 1/150th of a human hair, which are spunbonded into a tough, light, homogeneous fabric with inherent vapour breatheability characteristics on account of its microscopic lattice structure.

This inherent ability to evacuate body moisture results in greatly improved wearer comfort in many Type 4,5 and 6 applications.

Humidity between underwear and garment

With their open structure, SMS coverall removes better the humidity than Microporous Film, by far. Tyvek[®] garment meets quite good performances during sweating. Microporous Film is the material that takes the longest time to remove humidity.

N=5 garments tested

Figure 12 Humidity between underwear and garment (by family) Source: Independent Institute

APPENDIX 8

Static electricity discharge

The electrostatic properties of protective clothing

The rubbing of a synthetic material against the skin or undergarments is sufficient to permit electrostatic charges to build up on the fabric. These triboelectric effects of a fabric can generate thousands of volts and a charge dissipation via a tiny spark from a coverall to a surface of opposite electrical potential in a flammable, gaseous, or dust-charged atmosphere could result in a catastrophic explosion.

Safety in explosive environments

Companies operating in sectors such as the chemical, pharmaceutical, industrial coatings and gas supply industries use combustible materials that can potentially create explosive atmospheres.

These 'explosive protection zones' or 'EX-Zones' are classified into various categories depending on the frequency and length of time that the hazard exists.

Combustible gases and vapours are classified into three explosion groups (IIA, IIB and IIC) according to the minimum amount of energy required to ignite them. The most easily ignitable group is class IIC.

Antistatic features in protective clothing

Antistatic finishes for limited-use garments generally work by using the moisture of the air to turn the finishingcompound into a charge-conductive surface. This means, that if there is enough moisture in the air – typically above 25% RH – the antistatic property is 'active'. If however the moisture level is below 25% RH, the antistatic property will be either reduced or perhaps completely absent, depending on the prevailing humidity level.

Ex protective	Zones for gases, vapours and mists	Ex protective Zones for dust			
Zone 0	A place in which an explosive atmosphere consist- ing of a mixture with air of dangerous substances in the form of gas, vapour or mist is present continu- ously or for long periods or frequently.	Zone 20	A place in which an explosive atmosphere in the form of a cloud of combustible dust in air is present continuously, or for long periods or frequently.		
Zone 1	A place in which an explosive atmosphere consist- ing of a mixture with air of dangerous substances in the form of gas, vapour or mist is likely to occur in normal operation occasionally.	7one 21	A place in which an explosive atmosphere in the form of a cloud of combustible dust in air is likely to occur in normal operation occasionally.		
Zone 2	A place in which an explosive atmosphere consist- ing of a mixture with air of dangerous substances in the form of gas, vapour or mist is not likely to occur in normal operation but, if it does occur, will persist for a short period only.	Zone 22	A place in which an explosive atmosphere in the form of a cloud of combustible dust in air is not likely to occur in normal operation but, if it does occur, will persist for a short period only.		

Source: Directive 99/92/EC

Table 14 Examples of explosion groups.

IIB	lic
Ethylene	Acetylene
Ethylene oxide	Hydrogen
Diethyl ether	Carbon disulphide
	Ethylene Ethylene oxide

Source: TRBS 2153 - Technische Regel für Betriebssicherheit, Vermeidung von Zündgefahren infolge elektrostatischer Aufladungen - www.baua.de

Earthing

In order to avoid the creation of sparks (that might ignite an explosive atmosphere or cause operator discomfort), the garment and the wearer need to be properly grounded. This means that both the clothing and the wearer must be continuously earthed, taking care to ensure that the correct fabric side (inner or outer) is grounded in those cases where the garment's antistatic treatment is limited to one side. Special attention must also be paid to garments with attached socks or overshoes.

There are some essential rules for the safe discharge of static electricity:

- Both wearer and garments must be correctly and continuously grounded via conductive safety shoes, floor and/or grounding cable.
- Electrostatic charges may build up on ancillary equipment. Breathing apparatus and other devices must therefore be separately grounded when being worn in conjunction with a garment.

Single-sided versus double-sided

Some fabrics, particularly multi-layer, coated and coloured fabrics, may be antistatic treated on one side of the material only. An antistatic coating on both sides of a garment will reduce antistatic build-up and the attraction of particulates. However, neither single- or doublesided coatings will necessarily prevent the risk of ignition in highly explosive conditions such as hydrogen atmospheres and oxygen-enriched air. In these cases the garment manufacturer must be consulted for guidance. In all situations the garment must be adequately grounded. With one-side treated garments care must be taken to ensure that it is the surface of the clothing which has been given antistatic treatment that is earthed.

ATEX Directives

For standard chemical protective clothing it is not a compulsory requirement for garments to be antistatically treated or have antistatic features. However due to the prevalence of operations and applications being managed under ATEX controls it is a much-requested feature.

Organizations in the EU must follow the ATEX¹ Directives to protect employees from explosion risk in areas with an explosive atmosphere.

There are two ATEX directives:

- The new ATEX Directive 2014/34/EU² is for equipment manufacturers and covers equipment and protective systems intended for use in potentially explosive atmosphere.
- The 'ATEX 137' workplace directive 99/92/EC³ provides minimum requirements for improving the safety and health protection of workers potentially at risk from explosive atmospheres.

Antistatic certifications

In order to compare antistatic properties of chemical protective clothing on a standardised level, there are several norms which manufacturers can use. With such norms the surface resistance and the charge-decay properties of fabrics can be measured and/or assessed. The surface resistance is covered by EN 1149-1 and the charge-decay is covered by EN 1149-3. EN 1149-1 is mostly used for finished fabrics, whereas EN 1149-3 is used when surface resistivity can not be used because the dissipation of charges is based on induction.

In addition to these test-method standards there is a further standard, EN 1149-5:2018⁴ which provides the performance requirements for anti-static PPE.

Notes:

For the antistatic performance data relating to a particular product please refer to the relevant technical data.

< DUPONT >

APPENDIX 9

Garment donning, doffing and adjustment

The right size and usage of the garment

Choosing the correct size of garment is a prerequisite not just for greater safety but also for greater comfort. Choosing the wrong size can have fatal consequences; if it's too big it can get stuck in production machinery, if it's too small it can tear or considerably restrict mobility. It is important that a coverall is used that not only offers the correct protection but also fits the person properly.

For guidance on donning and doffing procedures please consult your supplier refer to the following videos.

D <u>Tyvek[®] 500 Xpert</u>

D <u>Tyvek[®] 800 </u>]

D <u>Tychem[®] 6000 F</u>

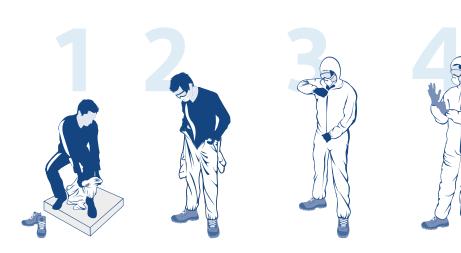
Training

A theoretical knowledge of how to don and doff a protective garment is no substitute for practice. It is important to remember that only people who have received specific training should be authorised to wear, remove and dispose of contaminated clothing.

Recommended donning & doffing procedures for chemical protective clothing

Follow the steps recommended below to dress and undress in a safe and simple manner, thereby limiting any potential for contamination after working in a hazardous environment.

The right size for increased protection and comfort


SIZE (CM)	SM	MD	LG	XL	2XL	3XL	4XL	5XL	6XL	7XL
	84 - 92	92 - 100	100 - 108	108 - 116	116 - 124	124 - 132	132 - 140	140 - 148	148 - 156	156 - 162
	162 - 170	168 - 176	174 - 182	180 - 188	186 - 194	192 - 200	200 - 208	208 - 216	208 - 216	208 - 216

Typical products following this procedure:

Tyvek[®] 500 Xpert, Tyvek[®] 500 Safety Orange, Tyvek[®] 500 HV, Tyvek[®] 400 Dual, Tyvek[®] 800 J

DONNING

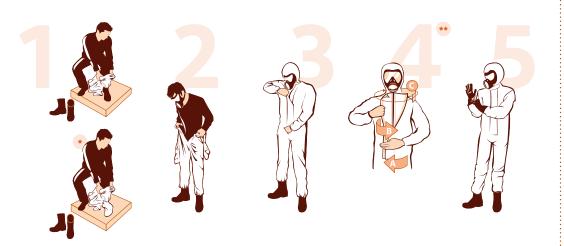
DOFFING

* For Tyvek® 600 Plus and Tyvek® 800 J, use self-adhesive tape to seal the zipper and chin flaps.

Recommended donning & doffing procedures for chemical protective clothing

Follow the steps recommended below to dress and undress in a safe and simple manner, thereby limiting any potential for contamination after working in a hazardous environment.

The right size for increased protection and comfort


SIZE (CM)	SM	MD	LG	XL	2XL	3XL	4XL	5XL	
	84 - 92	92 - 100	100 - 108	108 - 116	116 - 124	124 - 132	132 - 140	140 - 148	
	162 - 170	168 - 176	174 - 182	180 - 188	186 - 194	192 - 200	200 - 208	208 - 216	

Typical products following this procedure:

Tychem[®] 2000 C, Tychem[®] 4000 S, Tychem[®] 6000 F

DONNING

DOFFING

* Garment with integrated socks only ** We recommend to request second person's help to stick the flap properly, and to remove the garment without getting contaminated. In case no one can help, the use of a mirror is recommended.

APPENDIX 10 Garment storage and expected life span

Good storage and maintenance will ensure that a protective garment performs as it should do at the time it is needed. Correct storage is an essential part of any PPE programme, whether the items are used being used daily or stored for future or emergency use. Inadequate or unduly prolonged storage conditions can directly affect a product's functional performance and provisions must always be made to ensure that adequate storage and renewal provisions are in place.

Garment 'Shelf Life'

The 'shelf life' of a protective garment relates to it expected functional life under recommended storage conditions. It is the timespan during which a product can be used with its functional performance still intact. Different products and brands can have widely varying 'shelf lives' with some having a very limited shelf-life and others coming from suppliers that are unable to provide accurate product longevity data. This is very important, since a product with an expired shelf-life cannot be guaranteed to provide the level of wearer safety specified and their use could leave personnel with inadequate protection.

There is no official norm describing how shelf life of PPE should be determined and therefore specifiers and users must ALWAYS CHECK what manufacturer tests have been conducted and what data is available to support claims relating to product life expectancy.

Garment storage and maintenance

Both garments in storage and garments in use must be stored correctly in accordance with manufacturer's recommendations. Typically this will require that they are kept in clean, dry, secure conditions at temperatures of between 10-25°C preferably in a dedicated and sealed container or locker to minimise the risks of tampering, unauthorised use, and inadvertent damage. Direct exposure to sunlight for prolonged periods must be avoided and garments must always be visually inspected for damage before wearing.

It is recommended that a nominated person is put in charge of storage and maintenance to ensure that the responsibility is not overlooked or carried our ineffectively. Employees should be educated in the correct use of all PPE and must be responsible for reporting any loss, fault or damage.

It is the employers responsibility to ensure that appropriate PPE is available at all times to employees. It is important that a PPE review, rotation and replacement programme is in place to check that protection is available and that it is within its designated shelf-life.

In the case of Tyvek[®] and Tychem[®] products, DuPont has based its recommendations for shelf life upon accelerated-ageing tests on fabric tensile properties. Different fabrics were aged using an ASTM 572-88 test modified to incorporate higher temperatures (100°C vs 70°C) and higher pressures (300 psi vs 100 psi), to provide a more rigorous evaluation. The results of this evaluation conclude that Tyvek[®] and Tychem[®] fabrics retain physical strength and barrier properties over following years:

Fabric Type	Expected fabric shelf life (years)
Tychem [®] TK	10
Tychem [®] 6000 F	10
Tychem [®] 2000 C	10
Tychem [®] 4000 S	5
Tyvek [®] 600 Plus /500/400	10
Tyvek [®] 800 J	5
Tyvek [®] IsoClean [®] non sterile	10
Tyvek [®] IsoClean [®] clean & sterile and sterile only	5
Tyvek [®] 500 AV/ES	10
ProShield® 60	3
ProShield® 20	3
ProShield [®] 20 SFR	1.5

Periodic garment testing

In the case of gas-tight suits it is recommended that regular pressure tests are carried out on at least annual intervals throughout the designated product life span. This applies whether the products are in use or in storage.

APPENDIX 11

Garment disposal and end-of-life options

Disposal and Recycling

For environmental and safety reasons it is important that users of protective clothing have a garment disposal and recycling programme in place. Many types of uncontaminated and unused garments can be recycled at standard recycling facilities. Contaminated coveralls should be treated as hazardous waste and be disposed of according to the nature of contamination and in accordance with national and local regulations. This will normally entail incineration or other approved method.

Tyvek[®] is a nonvowen sheet made of High Density Polyethylene (HDPE). It is produced by DuPont de Nemours Luxembourg S.à r.l. Under an environmental policy verified to ISO 14001. DuPont is comitted to the efficient utilisation of reutilisation of resources and collaborates with designers, converters, manufacturers and others to help them meet their sustainability goals.

Notes:

For safety reasons DuPont does not recommend the use of reuseable and launderable garments where a limited-use garment of equivalent or higher-performance is available.

Most preferred option

Virgin, unpigmented Tyvek[®] can be 100% recycled back into equivalent quality product with no loss of properties or functionality whatsoever. DuPont has been carrying out this recycling process at its manufacturing plants for several decades.

Using the right preparatory and processing equipment, used but uncontaminated Tyvek[®] can also be recycled at facilities accepting HDPE. Reclaimed material can be repurposed into new quality products such as garden furniture, milk crates, wall cladding, toys, refuse containers and waste pipes.

Subject to local regulations, contaminated Tyvek[®] can be safely incinerated and, under optimal conditions, will only release water and carbon dioxide, leaving no significant residues. It can be used a fuel yielding more than twice the energy value of coal, and as much energy as oil, in terms of BTU rating.

If recycling or incineration are not options, Tyvek[®] can be safely landfilled. Because it is chemically inert and contains no fillers, binders or additives, Tyvek[®] will not leach into groundwater nor release contaminants into the soil.

Least preferred option

Figure 13 End-of-life options for Tyvek® products, Source: DuPont

Tyvek® is made of HDPE and products made of 100% Tyvek® material can be recycled at facilities that recycle flexible HDPE materials. Recycling facilities for Tyvek® may not exist in your area

Connect with us: 🕒 🛅

This information is based upon technical data that DuPont believes to be reliable. It is subject to revision as additional knowledge and experience become available. It is the user's responsibility to determine the level of toxicity and the proper personal protective equipment needed. The information set forth herein reflects laboratory performance of fabrics, not complete garments, under controlled conditions. This information is intended for use by persons having the technical expertise to undertake evaluation under their own specific end-use conditions, at their own discretion and risk. Anyone intending to use this information should first check that the garment selected is suitable for the intended use. The end-user should discontinue use of garment if fabric becomes torn, worn or punctured, to avoid potential chemical exposure. Since conditions of use are beyond our control, DUPONT MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES of MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND ASSUME NO LIABILITY IN CONNECTION WITH ANY USE OF THIS INFORMATION. This information is not intended as a license to operate under or a recommendation to infringe any trademark, patent or technical information of DuPont or other persons covering any material or its use.

© 2024 DuPont. All rights reserved. The DuPont Oval Logo, and all trademarks and service marks denoted with ^M, SM or [®] are owned by affiliates of DuPont de Nemours, Inc. unless otherwise noted. Not to be used without consent of DuPont | L-DPPCAT_2024_EN Version 2.0.